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Abstract

BDDs and their algorithms implement a decision procedureQaantified
Propositional Logic. BDDs are a kind of acyclic automata. t Barestricted
automata (recognizing unbounded strings of bit vectors) lwa used to decide
monadic second-order logics, which are more expressivéimePexamples are
WS1S, a number-theoretic logic, or the string-based légiotation of introduc-
tory texts. One problem is that it is not clear which one iseémbeferred in prac-
tice. For example, it is not known whether these two logies @mputationally
equivalent to within a linear factor, that is, whether a fatax of one logic can
be transformed to a formuld’ of the other such that’ is true if and only if¢ is
and such thap’ is decided in time linear in that of the time for

Another problem is that first-order variables in either i@rsre given automata-
theoretic semantics according to relativizations, whighsyntactic means of re-
stricting the domain of quantification of a variable. Suclatieizations lead to
technical arbitrations that may involve normalizing eaagbfermula in an asym-
metric manner or may introduce spurious state space erpsi

In this paper, we investigate these problems through stunficongruences
on strings. This algebraic framework is adapted to languhgeretic relativiza-
tions, where regular languages are intersected with céstis. The restrictions
are also regular languages. We introduce ternary and déepararacterizations
of relativized regular languages. From properties of tiseltang congruences, we
are able to carry out detailed state space analyses that adldo address the two
problems.

We report briefly on practical experiments that support esults. We con-
clude that WS1S with first-order variables can be robustiglémented in a way
that efficiently subsumes string-based notations.

*Some of the material in this paper appearedComputer Aided Verification, CAV '92NCS 1633,
1999, under the title "A theory of restrictions for logicsdeautomata.”



1 Motivation

The relationship between automata and logic has been vegessfully exploited
through Binary Decision Diagrams[4]. This technique abofermulas of proposi-
tional logic to be decided through the use of automata reptations for sets of strings
of bounded length. But, a more genel@jic-automataconnection exists: Bichi[5],
Elgot[6], and Trakhtenbrot[17] argued fourty years aga thdogical notation, now
called the Weak Second-order theory of 1 Successor or WSdigee a more natural
alternative to what already was known as regular expressi$1S has an extremely
simple syntax and semantics: it is a variation of predicaggcl with first-order vari-
ables that denote natural numbers and second-order \esitifelt denote finite sets of
natural numbers; it has a single function symbol, which demthe successor function,
and has usual binary operators suckdas-, € and>D.

Buchi, Elgot, and Trakhtenbrot showed that a decision gaace exists for this
logic. The idea is to view interpretations as finite stringsrdbit vectors and then to
show by explicit constructions of automata that the set ti$fyéng interpretations for
any subformulais a regular language. In this way, an automtaécomes an object that
represents the logic semantics of a formula, and it makesegertalk about automata-
theoretic semantics, which characterize the computdteparoach to the logic. As
with Binary Decision Diagrams, the idea behind the decigioocedure is to con-
struct inductively a deterministic automaton for each suiniula. This method, which
we shall review in detail, handles each connective in thé&cltyyough an automata-
theoretic operation, such as product or subset construcfio decidea sentence is
then under this view the process of building the automatduadtively.

A main motivation of this article is to make the decision prdare feasible in prac-
tice. Since 1994, we have explored the practicality of tlyggcl@utomata connection in
the Monaproject, first described in [7]. The Mona tool has been usea feariety of
tasks, for example in linguistics[18], pointer verificatj@3], protocol verification[14],
and hardware verification[2]. Among other implementatibaltenges[12], we discov-
ered spurious state space explosions in intermediate atdorBometimes, we would
be prevented from solving even trivial problems due to pinegrea that we will uncover
and overcome in the present article.

1.1 The string-theoretic formulation and relativizations

The problems we encountered are in part linked to the existehtwo approaches to
monadic second-order logic.

The logic WS1S, the first approach, is a very natural notatiahsatisfies elemen-
tary expectations. For example, a sentence in WS1S is ¢ithesor false and a formula
with k free first-order variables defines a relation that is simpylaset ofN*, where
N is the set of non-negative integers. Thus, we call this aggrdo the logic-automata

connectiomumber-theoreticThe automaton for a sentence is a simple one: it has one

state (if minimized)! If it is accepting, the formula is truérejecting, the formula is
false.

The second approach, the one emphasized in presentatitins loigic-automata
connection (such as in [15, 16]) is more complicated to erpkt least when it comes



to the semantics, which are tied to a parameterized, finitbpounded domain repre-
sented by a numbet > 0. This number defines a s, ...,n — 1} of positions
Under this view, the truth status of a sentence depends ¢or example, a sentence
may be defined that is true if and onlysifis even. A formula with free first-order
variables now defines a parameterized family of finite refetj where theth relation
is a subset of0,...,n — 1}*. We call this view thestring-theoreticapproach, since
the semantics can be explained advantageously in termsirgst The ideas of the
automaton-theoretic decision procedure of WS1S stillgpplfact, the algorithm be-
comes much simpler, which is the reason that this approaaftes preferred in intro-
ductions to the logic-automata connection. The approaalsdsintrinsically appealing
for certain applications, for example in the descriptiod a&erification of parameter-
ized hardware[2]. Among other names, these logics have badsd MSO(S)[16],
SOMJ[+][15], and M2L(Str)[7, 9]. They vary slightly, but weillvidentify them as
M2L(Str) in this paper.

There are two reasons for preferring the number-theorppicaach. First, its logi-
cal semantics are simpler as just argued—it can be expl&ineebple with little math-
ematical background. Second, WS1S appears to be the stloggein the following
sense: there is apparently no known polynomial time redactifrom sentences in-
terpreted under the WS1S view to sentences interpreted thmel#2L(Str) view such
that f(¢) is true for alln if and only if ¢ is true. In contrast, there is a rather obvious,
linear translation in the other direction: given a sentepiesnder the string-view, we
turn it into a formulag’ with one free variablé such that holds forn if and only if
¢’ holds under the interpretatidn— n. Specifically,¢’ is obtained fromp by restrict-
ing quantified variables to the domajf, ..., $ — 1}. Syntactically, the restriction to
{0,...,$ — 1} for a variable can be expressed as a formula that is conjdméue
formula of the existential quantifier introducing it. Sugmtactic constructs are well-
known in logic; they are callecklativizations (As usually formulated, a relativization
of the formula imply that every variable quantified is restd, see[3]. In our case, we
relativize only the second-order variables that reprefestiorder variables.) We call
the formulay’ a WS1S representatiaf the M2L(Str) formulag.

A main focus of the present work is to show how relativizasican be guaranteed
to work in practice. In fact, even though the syntactic ttatien is linear, there is no
guarantee that the computations involved in calculatieglitomaton fog’ (under the
WSL1S view) are not asymptotically more involved than thoselved ing (under the
M2L(Str) view).

Indeed, during early experiments with this procedure, sabjem was that seem-
ingly innocuous formulas would yield enormous automatarattie conversion into
WS1S. So, we say that aafficient translation algorithnis one that in linear time
transforms any sentengein M2L(Str) to a representatiaff such thaty’ is decided in
time that is linear in the time to decidie Let us call the question of finding such an
algorithm thetranslation problem.

1.2 Handling of first-order variables

Another computational problem we encountered with monadond-order logics
stems from the way that first-order variables and terms anelled. Through for-



mula rewritings, they are transformed into second-ordenfstes. The second-order
variables are subjected to relativizations that resthient to singleton sets. Conse-
quently, automata corresponding to subformulas are ngtlgidetermined by the log-
ical semantics, but also according to how relativizatioresfarmulated. So, to make
automata for formulas canonically determined, extra aatarproduct operations are
used toconjunctively normalizéhese intermediate automata as we shall see. (The
canonicity of representations is essential to the succkasitomata-based methods
such as BDDs—it guarantees that intermediate results weyalpruned to their min-
imum size.) Thdirst-order semantics probleis to find an automaton representation
that is no bigger than the conjunctively normalized repnég#on, while not requir-
ing such explicit normalization steps. This is importanpiactice, since we want to
minimize the amount of computational work.

We note that there are other ways of deciding WS1S, for exauthpbugh Ehren-
feucht-Fraissé games[15] or through bounded-model tqaks[1].

1.3 Contributions of this paper

In this paper, we propose solutions to the translation gmband the first-order se-
mantics problem. We do so by studying relativizations in lgelaraic framework. We
proceed as follows.

We formulate a syntax for WS1S, where relativizations arderexplicit, and we
provide initially three different automata-theoretic settics: (1) thead hocsemantics
that correspond to the strategy we first used in the Mona im@teation for first-
order variables, (2) theonjunctive normalized semantiwhereall the intermediate
automata are conjoined with relativizations, and (3)tdreary semantigswhich are
based on valuations that identifies the membership states {) for each string in
the restriction and assigns to each string not in the restriction. We explain why the
ad hoc semantics are unsuitable, and why the conjunctivmalred semantics, in
addition to being asymmetric, would slow down the decisioscpdure. We show that
the ternary semantics make most normalizations unnegessace they inherently
propagate through the automata-theoretic constructidiso, we indicate how the
ternary semantics can be implemented based on the stan&ir8 @écision procedure.

To study the question of automata sizes, we give a detailadraence-theoretic
analysis of regular languages under relativizations, iatinder intersections with
other regular sets that act as restrictions. We introduagiamof athin language, and
we show that the relativizations occurring in the treatnwdifirst-order variables and
in the translation problem are thin. We prove that languameler thin relativizations
make comparisons of the conjunctive normalized semantidgtze ternary semantics
easy: the latter are the same as the former except for someaxutivalence classes
that we characterize. We show that if the automata of réistnis are bounded, then
the sizes of intermediate automata occurring under thatgsemantics are to within
this additive bound the same as the sizes of automata of thjaretiive normalized
semantics.

We strengthen this result by exhibiting congruences basegexpartite semantics
that are no bigger than those of the conjunctive normalieedastics. The sexpartite
valuations are based on the ternary ones, but for certangstthey do not yield an



exact answer to what the ternary evaluation is. We are alsledw that operations cor-
responding to logical connectives may be formulated diyemt automata represent-
ing these congruences, under the further assumptioriggfnessa language-theoretic
property that the restrictions of the first-order semangicsblem and the translation
problem enjoy.

Our main result is that the resulting decision procedureleafequiring only few
normalizations, involves intermediate automata that amaast the same in size (to
within a linear factor) as the ones occurring under the aactjue normalized seman-
tics, but sometimes only logarithmic in size compared todbejunctive normalized
semantics. Thus, we have found a symmetric and efficieneseptation of formulas
under restrictions.

We conclude that WS1S, and not a string-oriented logic, ésktbst interface to
the logic-automata connection, since in practice thegtttireoretic view is effectively
subsumed by the number-theoretic view through the teclesigeveloped in this arti-
cle.

1.4 Organization

In Section 2, we review WS1S and its decision procedure. \WWeige further moti-
vation for why normalizations are necessary, both in the cddirst-order variables
(Section 2.3) and in the case of the translation problemti@e2.4). For the latter, we
discuss an example in detail.

In Section 3, we formalize the classic semantics, the cativmnormalized one,
and the ternary one. We also discuss the relationship batavsgntax that explicitly
accommodates relativizations and the automata-the@@tiantics.

In Section 4, we develop an understanding of restrictionsised on regular lan-
guages through ternary valuations. In particular, Thedtaelates sizes of automata
under the conjunctive normalized semantics and under thargsemantics.

In Section 5, we present state space engineering techrtltptesmove information
from ternary valuations. The resulting sexpartite valuai are specialized ternary
valuations. We discuss ways of calculating sexpartiteatadns and how to reason
about them.

In Section 6, we study the problem of calculating the seXgar¢presentation of
intersections directly from the sexpartite representadithe sets involved.

In Section 7, we show how the sexpartite semantics of WS18easformulated in
ways that will support better algorithms; in particular, imeto avoid normalizations.

In Section 8, we present the algorithms that may be used irtigide procedure
for WS1S based on techniques from the Sections 6 and 7. licylarf we formulate
algorithms that allow us to formulate our second theorem1%/8nder restrictions of
the kinds we are interested in can be decided in a way thattis exponentially faster
than using the conjunctive normalization technique.

In Section 9, we summarize and provide some hints about #atipal performance
of the Mona tool when equipped with techniques of this asticl



2 WSI1S: review and issues

We need to fix a syntax for WS1S. We follow the concrete, ASgised syntax of
Mona, but we keep only a small set of primitivédutshell WS18an be presented as
follows. A formulag is compositeand of the forni ¢/, ¢’ & ¢, orex2 Pi: ¢/, oritis
atomicand of the formP? sub P7, P' < P7, P =PJ\ P* or P* =P7 +1. Here, we
have assumed that variables are all second-order and nRmethere; > 1. Other
comparison operators, second-order terms with set-tlieangerators, and Boolean
connectives can be introduced by trivial syntactic ablatiwns, see [11, 16]. The
treatment of first-order terms is discussed later.

2.1 Logic Semantics of WS1S

A decision procedure takes as input a formadla called the main formula, whose
truth status is to be investigated. Following standard taracwe sometimes regard
the main formula as an abstract syntax or parse tree (witbatsfacing up—the usual
convention). We define itlbgic semanticgor justsemanticsinductively relative to

a stringw over the alphabeE = B*, whereB = {0,1} andk is the number of
variables inpy. We assume that, is closed and that each variable is bound in at most
one occurrence of an existential quantifier. Generally, aresier only formulas that
are subformulas of, since the semantics are formulated in terms of strings aver
bounded alphabet—something that prevents us from givingaeécs to all possible
formulas given a value df. We now regard a string = ag - - - a¢—1, wherel = |w| is
the length ofw, to be of the form:

1 1 1
P ag ag_q
k k k
P g g1

where we have indicated (left) that if the string is viewedaamatrix, then row is
called theP?-track Each letter is sometimes written in a transposed notation as the
vector(al,...,a%)t. The interpretationu(P?) C N of P’ defined byw is the finite
set{m | themth bit in the P*-track is1}. Note that suffixingv with a null-extension
a string of the forn0 - - - 0 with 0 = (0, ...,0)%, does not change the interpretation of
any variable.

The semantics of a formutacan now be defined inductively relative to an interpre-
tationw. We use the notatiowm = ¢ (which is read:w satisfiesp) if the interpretation
defined byw makesy true:

wkE™ ¢ iff  wk ¢

wk ¢ & ¢ iff  wE ¢ andw E ¢

wEex2 Pii¢/  iff 3finite M C N:w[P' — M]F ¢/
wkE Pisub P iff  w(P") Cw(P7)

wk Pi< PJ iff Vhew(P):Vkew(P!):h<k
wk Pl= PN\ Pk iff  w(P?) =w(P?)\w(P*)

wkEP =PI +1  iff wP)={m+1|mewlP)}



where we use the notatian[P* — M| for the minimal stringw’, called thewitness
string, that is at least as long as and interprets all variableB?, j # i, asw does,
but interpretsP? as M. Note that the truth status of a subformyldhat contains an
existential formula of the formw = ex2 P?: ¢’ does not depend on th¥-track, since
we assume that eadf is bound by at most one existential quantifier, and consetyuen
there can be no free occurrencerifin ¢. We could have chosen a model, where these
unnecessary tracks are removed—but that gives us the amatiph of working with
different alphabets for each subformula.

To fully explain the decision procedure for WS1S, we needtklat the situation
for quantification in more detail. This discussion will bé&ver technical; it is the reason
why introductory texts concentrate on M2L(Str) for whichst&ntial quantification is
straightforward. Looking at the witness stringP? — M| again, we observe that it
may be longer tham, since the greatest elementih may be equal to or greater than
the length ofw. In this case, the extension consists of all zeros excephéP:-track,
which describes the elementsf greater than — 1.

To characterize such extensions more formally, w&jebe the subset of all letters
of the form(0, ..., 0, X,0,...,0)* (where theX means that the value of thith com-
ponent is eithed for 1). An extension:’ in ©¢" is then called aull-but- extension
Thus, the witness string is of the foraf - ¢, wherew’ is the same string as except
possibly for theP?-track.

Generally, we may decompose amyinto parts: andz’ such that:* contains as
many letters from the end of the string as possible that i@ @litside theP?-track;
more precisely, we lab = @ - 2%, wherez® is a maximal, null-but-extension of some
prefix of w. Thus,w is empty or at least one noRi-track inw ends with al, i.e. the
last letter inw is not in 3. We say thato is but<-minimal

As defined, the witness string may not be shorter tharf-or example, ifw is all
zeros outside thé@’-track, with theP*-track consisting of all ones and = §, then
the witness string i@ - - - 0 of length|w|. We have introduced this requirement to avoid
other unpleasant technicalities later.

For any formulap, we associate thanguageLy = {w | w F ¢}. The interpreta-
tion of ¢ is independent ofy, since by assumption it is a closed formula. Thigsjs
either true, wherl, = ¥*, and we write= ¢y, or ¢y is false, wherL, = ), and we
write ¥ ¢.

Proposition 1 Wordsw andw’ that interpret all variables in the same way satisfy the
same set of formulas: if for all 1 < i < k, w(P?) = w'(P?), then for allg, w F ¢ if
and only ifw’ & ¢. Thus, the interpretation is invariant under null-extensi

Proof (Idea) By a simple induction on formulas we may show that for words
andw’ such thatw’ is a null-extension ofv the following holds: either both satisfy
¢ or both do not satisfyy. For existential quantification, we note thatif is a null-
extension ofw, thenw’[P* — M] is a null-extension ofu[P* — M]. O
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Figure 1: Automaton that accepts satisfying interpretetimr P*sub P2.

2.2 Automata-theoretic semantics

The automata-theoretic semantics define a decision proeditat associates to eagh
the deterministic, minimal automatoh, accepting the language.

2.2.1 Automata preliminaries

We recall that an automatoh = (2, Q, Qo, —, Q) consists of an alphab&, which
we here assume to [&¥, a finite set of stateg), a set of initial state§),, a transition
relation—C @ x ¥ x @, and a set of final state3”". A run (¢,)m<¢ over a word
w = ag---ap—1 € L* IS a sequence of states, . .., g, such thatyy € @, and for
allm, 0 < m < ¢ (Gm,@m,gm+1) €—. Thelengthof the run isé. The run is
acceptingf ¢, € QF, and the language accepted hys the set ofv that allows some
accepting run. The automatoh is deterministic ifQ), is a singleton and if for all
g € Q anda € X there is exactly ong’ such that(q, a,¢’) €—. Our automata are
assumed deterministic if not otherwise indicated. For amenistic automaton, any
word w allows exactly one run; if its length & then last state, of this run is denoted
LAST A(w) and we say thab brings A to stateg,.
Thesize| A| of an automaton is its number of states.

2.2.2 ConstructingA

For atomic formulag, a small, deterministic, minimal automaton can be directiy-
structed that accepts the langudge For example, for the formul®*sub P?, a two-
state automaton exists that accepts exactly the seffof whichw(P!) C w(P?); see
Figure 1, where we have followed usual conventions: statesiecles, the initial state
is denoted by an arrow pointing to it, transitions are desdtg arrows marked with
letters for which they apply, and the final states are desighlay an inner circle.

Other atomic formulas are treated similarly, and for conitedermulas we proceed
by induction.

For a formulap of the form™ ¢/, the automatom is taken to be the complement
of the automatord, calculated by induction. This automaton will be minimal by
construction since it is obtained by simply reversing finadl mon-final states in the
automatordy . The case of conjunction is handled by an automata-thequetduct
construction: givem,s acceptingL, and givend» acceptingLy~, we construct the



minimized product automaton of, and A,-; this automaton accepts the language
L¢/ n L¢N.

The case of quantification is more complicated. Consjderex2 Pi: ¢'. Define
the projection operatarrRoJ so that

1 if IM : A(u[P? — M]) =

1
0 if VM : A(u[P' — M]) =0 (1)

PROJA(u) = {
Then, A, is the automatorrRoOJ A /. The quantification over unbounded (but finite)
sets seems to contradict our use of finite strings. We desbolw to calculat@roJ
in two steps. In the first step, knowledge about possibleréugxtensions that only
interpret theP’-track is used to change the labeling of tHg: automaton. In the
second step, a conventional projection construction isezhout.

From an automator, we construct théuturizationof A, denoted-uT A accord-
ing to null-buti-extensions:

FUT!A(u) = {1 ?f Jv € E%.Ji cA(u-v) =1

0 ifYoeXly :Au-v)#1
This description can clearly be implemented as a linear timemata algorithm by
changing the labeling of the statestfappropriately.

We define a substitution operatd?’ := M| that overwrites the”? track without
changing the length of the string: for any finite gétwith max M < |ul, the string
v = u[P" := M]interprets allP?, i # j, the same way as, butv(P?) is M. Define
thebounded projectiomperatoBPROJ such that

1 if IM with max M < |u| : A(u[P? := M])

1
0 if VM with max M < |u| : A(u[P*:= M])=0

BPROJA(u) = {

This operator describes the traditional projection openabn the P? track. It can
be formulated as an algorithm that yields a deterministiomaton via the subset
construction. The algorithm may run in exponential timacsithe resulting automaton
may be exponentially bigger.

Proposition 2
PROJA = BPROJ(FUT'A)
Proof We have

PROJA(u) = 1 iff

IM : A(u[P? — M]) = 1iff

IM, z* with max M < |u|andz’ € ©5" : A(u[P' := M]- z') = 1iff
BPROJ(FUT'A)(u) = 1

where the second biimplication is valid becaligg”’ — M]| > |u| holds thanks to
the definition ofu[ P? — M]. O



2.3 Automata-theoretic semantics of first-order variables

Let us look at the first-order semantics problem. Adding-firster variables to nut-
shell WS1S can easily be done as follows: a first-order virighis regarded as a
second-order tern® that is restricted to take on values that are singleton sgtese
sole element denotes the valugp$ee [10, 15, 16]. This relativization isimposed syn-
tactically by conjoining a singleton predicaimgleton(  P) to the formula where
P is quantified; the symbaP is a meta-variable that stands for one of ##e The
singleton predicate can be expressed as a formula in nuksiel for any particular
P?. Thus, we view it as a macro, a textual expansion mechanisinam additional
primitive predicate that must be interpreted.

This classic relativization strategmneans that the automata-semantics of a formula
containingp are not entirely robust. The meaning of interpretatiansot fulfilling
singleton(  P) is not well-defined for subformulas in the parse tree belanpthint
of relativization. We will illustrate this phenomenon widm example that assumes
that we have already added the ability to express both fid#roand second-order
constants to the nutshell language. The formtla: p=0, wherep is first-order, is
then reasonably represented(@$ sub P, since this formula has the right truth value
relative to singleton interpretations 8% Similarly, we would reasonably translate the
formula¢’ = p < 1into P<{1}. But{0} sub P andP<{1} are not equivalent, except
when restricted to singleton interpretations. This phesoom leads to the following
problem: automata corresponding to subformulas may havey istates that describe
spurious and irrelevant truth functions outside the restms. Of course, these states
corresponding to interpretations outside the restricianeventually pruned thanks to
the conjunction of the restriction in the relativized qued formula.

In order to fix the automata semantics of subformulas, wedcardditrate as follows:
conjoin the restriction to every subformuain a procedure we cahormalization
Then, we would have a firm automata-theoretic explanatidinefanguagé. (¢) under
what we call thenormalize strategyUnfortunately, this solution is an asymmetric one.

The practical problem with a conjunctively normalized seaties is that additional
product and minimization calculations would be necesdarnyeach automatod rep-
resenting a subformula and each free variablg?, the automaton representing the
singleton property foPP* must be conjoined tel. Such extra calculational work slows
down the decision procedure in the following sense: eaabnaata-theoretic operation
must be followed by a product and a minimization. (Underaiarassumptions on
restrictions, the need for minimization may disappear, Seetion 4.) For example,
complementation, which is normally very fast since it cetsbf flipping acceptance
statuses of states, now would involve a product and a miitioiz operation.

In practice, the Mona implementation prior to the one impated with the results
of the present article used thd hoc strategythe restriction for variable is conjoined
only to atomic formulas wherg occur and to the formula in the existential quantifica-
tion introducingp. Note that this technique does not eliminate the problenpofisus
behavior for intermediate formulas. For example, the coctjirely normalized atomic
formulap=0 is not equivalent to the negation of the conjunctively ndirea atomic
formulap™=0 , where™ = means “not equal.”
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2.4 Emulation of string semantics in WS1S

We turn to the translation problem of how to use restrictimnafficiently translate the
string-theoretic version of monadic second-order lognte go to comes in number-
theoretic version. A simple choice of syntax for M2L(Strtésmake it identical to

nutshell WS1S syntax. The satisfaction relation is now e, .; it is the same

as for WS1S except that quantification is changed to:

W Fgtring €X2 Pig/iff  AM C{0,... jw| — 1}t w[Pi — M]E ¢/

where the notatiom[P? — M] now has a different meaning: it denotes the string
altered so that thé>* track describes/. Thus, the witness string[P? — M] for
the existential quantification has the same lengtivad he interpretation ofy, on a
string of w still does not depend on the individual trackswefbut it doesdepend on
the length ofw. Thus we writel .,y @0 if ¢ holds for a stringw of lengthi. For
example, a closed formula can be written that under thesarstrs holds if and only
if w is of even length.

To emulate=;ng In F, we must relativize all second-order terms to sets of num-
bers less than the last position in the string. Thus, we dhice a first-order vari-
able$ that simulates the entityw|. (Of course$ really stands for som@; variable
that is otherwise unused and that is relativized to act liKest&order variable.) A
$-restriction for a variable expresses that the variable is a subs¢0of..,$ — 1}.
Then, under the normalization strategy we conjbiconstraints for all free variables
of each subformula. The resultis a WS1S formgilavith one free variablé such that
m Eswring ¢ < w F ¢, where the-track ofw interprets$ asm. For example, the
formulaexl p:exl ¢:p = g becomesin WS1S:

[singleton  ($) &

ex2 P:ex2 Q:
[singleton  (P) &singleton (Q) & singleton  ($)
&P<$&Q<$&Psub Q &Qsub P

as expressed in nutshell syntax, where each normalizedrsnbla is enclosed in
brackets. The M2L(Str) formulation is

[ex2 P:ex2 Q:
[singleton  (P) &singleton (Q) &
Psub Q &Q sub PJ]

Proposition 3 Under the translation outlined above, the minimized, caaaautomata
arising during the M2L(Str) decision procedure are esatintthe same as the ones
arising during the WS1S procedure except for at most twotiadil states.

Proof (Sketch) First, we must establish the relationship betwikemeaning of a for-
mulag in M2L(Str) and the meaning af in WS1S, where is obtained by conjoining
the $-restriction for each variable occurring free ¢n If there aren variables ing,
then the$-variable receives index + 1. Letw be a string interpreting these+ 1
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variables. An inductive argument shows tlat= ¢ if and only if (1) the P™*!-track
is interpreted as a singletdd} and (2) for each free variablé’ in ¢ the Pi-track is
interpreted as a set of numbers less than

Second, we can use this knowledge to construct the WS1S atdarfor¢ from
the M2L(Str) automator by adding states,c..pt (an accepting state) anggje.: (a
rejecting state). The transition relation of the new autmmas the same as for the
old one as long as the addition&l't!-component i€). All old states are turned into
rejecting states. When tlfecomponent isl, corresponding to the end of the string
under the M2L(Str) representation, a transition is made.tQ.p¢ Or syeject according
to the accept status of the state that would have been redchled old automaton,
provided that theP’-component of all free variables is O (if the latter is no&trthen
a transition is made t6,eject). FromM sacept, @ transition is made t6rcject if any 1
occurs in theS-component (sincé must be interpreted as a singleton set) or in the
track corresponding to a free variablefinThes,.;c.; State is connected to itself on all
letters.

Finally, it can be shown that during minimization of the neutanaton, every
pair of any old states are still not equivalent with respedhe canonical equivalence
relation: the transitions to the two new states induce theegaartition of the old states,
regarded as part of the new automaton, as the one defined bygtexror rejecting
states of the old automaton. O

Our practical experiments with running string-based eXeamfranslated into WS1S
were based on the ad hoc strategy, where the restrictiorriablais conjoined only to
atomic formulas involving the variable and to the place vetibe variable is introduced
by quantifier.

The problem that bloated automata may occur thanks to theatmrstness of the
ad hoc strategy is not just a theoretical one. We discovéebilowing problem that
was serious enough to prevent benign formulas from beinglddc

Parity example Consider the formul@opp = €x1 p: (pin P! @©---@ pin P")
under the string-theoretic semantics, wherelenotes addition modulo 2 (properly
formulated in nutshell syntax). The formula holds if andyoiflthere is a position
contained in an odd number of the sés Translated into nutshell WS1S under the ad
hoc strategy, the formula becomes:

singleton( $)&
Pl<$ &
P'<$&
ex2 P: (singleton( $)&
((Psub P! &singleton(  P)&singleton(  $) & P'<$)
a((-+-)
@ (Psub P" &singleton(  P)&singleton(  $)& P"<§)...).
(2)

whered is a binary operator defined in terms&and™ .
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Proposition 4 The parity formulagep, expressed as (2) produces intermediate au-
tomata whose size is doubly exponentialrinvhen constructed according to Sec-
tion 2.2.2. But if then + 2 restrictions are conjoined to all subformula (that is, datso
each intermediate formula), then all intermediate automata have at most 2ésta

Proof (Sketch) Initially, let us discuss the size of the minimatiamaton forpsp,. The
alphabet isB"*2, since the formula containsvariablesP; and the variable$ andp,
whose real names in nutshell logic are, sBy, 1 and P, 5. But sincep is quantified
away, thep-track does not influence the way the minimal automaton wdks we will
regard the automaton as reading letters that are vectoigeof s- 1. The automaton
must check for each letter whether the number of ones ameriy st tracks is odd .
The automaton for = 2 is shown in Figure 2 as generated by Mona and the Graphviz
drawing program (the state labeléd an artifact of Mona'’s representation of Boolean
variables—it can be ignored). Intuitively, the automata bea explained as follows,
where states are named as in Figure 2. The initial statevidere the automaton can
stay until it finds a letter with an odd number of ones amongksa’; with i < n.
On such a letter it proceeds to st&teecording this fact, and it stays there. So far,
we have assumed that the end of the emulated string has notdmehed, that is, A

in the P, -track has not yet occurred. When thi®ccurs, the automaton proceeds
to either a rejecting stat2 from which it cannot escape or an accepting state
according to which of the two previously mentioned stategas in. The automaton
leaves accepting stateif another occurrence of ahappens in tracle, 1, since that
violates the constraint ohas a first-order variable.

01 0011
01 0101
0,0 1111

Figure 2: Automaton emulating string semanticsiioe 2 of parity example.

Now consider the subformula inside the quantiég® P in (2). It hasP as a free
variable. The translation of this formula results in a miairautomaton whose size is
exponential inn. Intuitively, this explosion stems from the need to recdre $tatus
of whether positionn is in P?, for eachl < i < n, wherem is the first position in
P,,.1—if this information is not recorded, then it is impossibtg the automaton to
figure out the eventual truth value of tith summand. In fact, whem € P?, the truth
value of theith summand still becomes false if tié-track contains any 1s further out
than the number designated ®ybecause of the last conjoint in each summand.
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Moreover, it can be seen that the subset construction abjplieonnection with
eliminating theP-variable will yield a further exponential blow-up. Intivi¢ly, what
happens is that the subset construction results in autontla records the set of all
vectors seen, since it must guess the value of

While we do not present a formal proof, the experimental bighasupports the
intuition just given: forn = 1,2 and, 3, the size of the automaton corresponding to
the subformul@x2 P is 21,265, and65553, approximately2?”, 22° and22". Itis not
possible to calculate the automaton fo& 5.

Finally, we have experimentally found that for= 2, ..., 10 the maximum num-
ber of states occurring in any intermediate automaton isr24ss under a hormalizing
semantics (with no increase from= 4 to 10). These experiments are done based on
a ternary logic; for the binary semantics, the maximum nunobstates will possibly
be less (according to results later this in article.) Thematta still grow linearly in
size ofn since the transitions, represented by BDDs in the Mona tmedpme more
complicated. We leave it to the reader to reflect on why thebemof states is limited
by a constant. O

3 WSS with relativizations

To give a deeper understanding of relativizations, we thicenutshell WS1S-Ra
variation on WS1S where relativizations are explicitly keat. Letp be a formula that
is therestriction of variableP?. Existential quantification will now take the form

ex2 P'where p: ¢/, (3)

where¢’ is thetraditional part of the quantified formula. The restrictigncan be
an arbitrary formula (as long as the main formularemains closed). In general, we
denote byp(P?) the formulap introduced by the existential quantification Bf. For
uniformity, we assume that ead is relativized in this way, possibly to the formula
Pi=P? which is another way of sayirtgue . Our goal in this section is to show how
aternary semantics allow restrictions to bubble up whedede-eliminating the need
for normalization at every intermediate step.

To carry out inductive arguments, we define the partial anged among subfor-
mulas as followsy <1 ¢’ if (1) ¢ is a proper subformula @f or (2) if there is a formula
1 = ex2 P'where p(P%):¢" such thatp is a subformula op(P?) and¢’ is a sub-
formula of ¢”. This definition is illustrated in Figure 3, where the rootloé subtree
for Case (2) is the node for the formulg which has two children, the left one for
the restriction and the right one for the traditional patiepartial orderinga is well-
founded: a post-order labeling of nodes with numliers . .. produces an ordering,
where all children of a node are assigned a number less tiaaoftthe parent (mak-
ing the labeling consistent with case (1)) and where any tloalsis a left descendant
of some node is assigned a number less than a right descenting the labeling
consistent with case (2)).
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) = ex2 P?where

D ——-—-—

Case (1) Case (2)

Figure 3: The two ways fop <1 ¢’ to hold.

When we formulate semantics, variable occurrences in dolitional part of formu-
las will be subjected to restrictions. More preciselyestrained variable occurrence
of P is one inside the traditional pagt of the formula (3) introducing®. For a for-
mula¢, the set ofestrained direct variable®RV(¢) is the set of variables who have
restrained occurrencesjn

Proposition 5 For eachp and each? € DRV(¢), p(P) < ¢.

Proof Let P? be a restrained variable occurringdn Then,¢ is a subformula of’,
whereex2 P®where p: ¢’ is the formula introducing®® with p = p(P?). Thus,
p = p(P%) <1 ¢ holds according to (2) of the definition ef. O

The treatment of restrained variables require additiotiahion. Consider a vari-
able@ that is relativized to the restrictioR = Q. When a subformulg mentioning
@ is given meaning, we must include the requiremBnt @ in order to avoid later
normalizations. Butif? itself is relativized taP = ) in some outer existential quantifi-
cationv, then the restriction o itself must be included at some point. The situation
is detailed here:

h=ex2 Pwhere P=0:ex2 Qwhere P=Q:Q =Q (4)
¢

In this case, we wish to enforce also implied restrictiorehsas@ = 0.

To do so, we define for a formulathe sefRV(¢) of restrained variableso be the
direct restrained variabl@RV(¢) together with variableRV(p(P)) for P € DRV(¢).
This definition makes sense, because by virtue of Propogti&V(¢) can be defined
inductively on formulas ordered according4n For example, in (4) the restrained
variables ofp areRV(¢) = {P, Q}.

For any formulap, we define the induced restrictigiitV(¢) to be the set of restric-
tions of restrained variables, that is, the §gtP?) | P° € RV(¢)}. In the example,
p™(¢) is {P = 0, P = Q} and the conjunction of these formulas imgly= 0 as
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desired. By a union-wise extension@f" to an operator taking a set of formulas as an
argument, the expressi@tV(p?V(¢)) also makes sense.

Proposition6  (a) p(P) < ¢ holds forP € RV(¢).
(b) p™(9) 2 P™(P™(9))
Proof

(a) By Proposition 5p(P) <1 ¢ holds forP € DRV(¢). ConsiderP’ € RV(p(P))
for someP € DRV(¢). We may by induction according ter assume that
p(P") < p(P). Thus, by transitivityp(P’) < ¢ holds.

(b) We need only to prove th&V(¢) 2 RV(p(P?)) holds forP? € RV(¢). But this
is a direct consequence of the definition of the restraineidbkes of a formula.

d

3.1 From binary to ternary semantics

Classic semantics There is an obvious way to define the semantics of NutshellS8¥YS1
R. We will state them using a meaning functiph®, which given a formula defines
avalue[¢] ¢ € {0, 1}. This notation anticipates multi-valued semantics:

[[~ ng’]]Cw — _\[[(b/]]cw
[[(b/&(b//]]cw — [[QS’]]Cw A [[QSN]]C’LU
1 if 3IM : [¢']Cw[Pi— M] =1
and[p] “w[P’ — M] =1

ex2 Piwhere p:¢'|¢w = .
[[ prdf"w 0 if VM : [¢/]Cw[P' — M] =0
or [p] Cw[P? — M] =0

[P sub PI]Cw = 1 if wE P?sub PJ
)0 ifwk Pisub PI

(Again, we have included only one kind of atomic formula,; ttleers also follow their
logic semantics.) Of course, we have the following corresigmce between WS1S
and WS1S-R.

Proposition 7 Assume that for a formula in Nutshell WS1S-R, we denote kaAythe
formula obtained by convertirgx2 P’ where p: ¢’ intoex2 P': p &¢'. Thenw =
¢ holds if and only if[¢] “w = 1 holds.

Since the classic semantics behave like expected, we alswi= ¢ for WS1S-R
formulas that satisff¢] “w = 1.
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Conjunctively normalized semantics Recall from Section 2.3 that a conjunctive se-
mantics solve the problem of spurious behavior of autorbated semantics. We de-
fine these semantics formally below, where we use the natgie¥(P? sub P7)|Nw =

1 to denote that for each € p®V(P? sub P7) it holds that[p] Y w = 1.

FoT¥ e = ~([81%w) A [PV N e =1)
[¢ &¢" 1V w = [¢TNw A [¢"]Vw

where o gTéw = 1 MO WP A =1
[ex2 P"where p:¢'["w = {O if VM : [¢/]Nw[P? — M] =0
1 if wE Psub PJ

and[pRV(Pi sub P/)]Nw =1
0 if wk Pisub PJ

or [P™V(P? sub P7)[Nw =0

[Pisub PI|Nw =

Following our goal of using as few normalization operatiasgpossible, we apply
the restrictions of free variables to atomic formulas anglatiens only. For conjunc-
tions, the free variables are the union of the free varialiethe contents; so, the
explicit normalization can be omitted. For existential giiication, any variable free
in the quantified formulax2 P? where p: ¢’ is also free inp or in ¢’. One problem
exists for the variablé’: if the restrictionp is not satisfiable and the varial® does
not occur ing’, then the quantified formula unexpectedly evaluateks tAnticipating
a similar problem for the ternary semantics, we settle oridhewing assumption:

For all formulas of the forng = ex2 P* where p: ¢’ and for allw: it holds that

E( & p(P)=>ex2 Pi:
w (PGRV(¢)p( ) p

(%)

where ‘=>" stands for implication (by an obvious formula transforioa). (Alter-
natively, we might demand that there is an occurrenc&7in p for all existentially
quantified formulas.) If we letv F p®V(¢) stand for the property that for alP? in
RV(9) it holds thatw = p(P?), then we may state the correctness of the conjunctively
normalized semantics as follows.

Proposition 8 Given assumption (5} F ¢ andw F p®V(¢) both hold if and only if
[¢]Nw = 1.

Proof The proof is by induction.

Casegp ="~ ¢'. We observe thakV(¢) = RV(¢'). Then,[” ¢']Yw = 1 if and only
if [¢']Yw = 0 and[p®V(¢)]¥w = 0 if and only if (by applying induction hypothesis
twice) (w ¥ ¢’ orw ¥ pV(¢)) andw E pRV(¢) if and only if w ¥ ¢’ andw E p*V(¢)
if and only if w F ¢ andw E pV(¢).

Case¢ = ¢’ & ¢"". We observe thaRV(¢) = RV(¢’) U RV(¢”) holds and that
p™(¢) = 1 holds if and only if bothp®V(¢') = 1 and p®V(¢"") = 1 hold. Then,
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[¢]¥w = 1if and only if [¢']Yw = 1 and[¢"]¥w = 1 if and only if (by induction)
wkE ¢ andw F ptV(¢') andw E ¢” andw F pRV(¢”) if and only if w F ¢’ & ¢ and
wE pRV(gb/ &(b”)-

Casegp = ex2 P'where p: ¢'.

We need to consider the two directions separately.

(=) Assume thatw F ¢ andw F p®V(¢). Then, there is a set/ such that
w[P? — M] F ¢/ andw[P! — M] E p. But, sinceRV(¢) does not mentio?, we
also have that[P! — M] F p®V(¢). Taken together withw[P* — M] F p, we
infer thatw[P? — M] F p®V(¢’). Now, together with the faab[P? — M] F ¢/, we
use the induction hypothesis to establish fgf ¥ w[P? — M] = 1. Consequently,
[6]¥w = 1.

(<) Intuitively, this direction is valid because an occurrené P! in ¢’ guarantees
thatp = p(P?) holds thanks to the inclusion of restrictions on variableuwgences in
atomic formulas; in the absence of such a variable occuesghe assumption (5) can
be used to find an alternativd that makes hold without affecting the truth value of
[

We proceed more formally. Assume tHaf| ¥ w = 1. Then, there is &/ such that
[¢']Nw[P* — M) = 1. By inductive hypothesis, we infer that P! — M] F ¢’ and
w[P! — M] E p®V(¢'). Fromw[P! — M] E p®V(¢'), we infer thatw = pRV(¢),
since P! is not a free variable ip™V(¢). That leaves us with the need to prove that
w E ¢ holds.

Now, if P* € RV(¢') holds, thenw[P? — M] E p holds—due taw[P! — M| E
p™V(¢')—andw F ¢ holds.

On the other hand, iP? is not a free variable i, then we can use assumption
(5) to find anM that makesw[P® — M] E p hold without impacting the truth of
w[P" — M] E ¢'. By induction hypothesis, it holds that[P* — M] £ ¢’ and
w[P? — M] E p. Thus, we conclude that = ¢.

Case[[P?sub P/]N. [Pisub P/]Nw = 1 if and only if (by definition)w &
Pisub P’ and[p®V(P? sub P7)]Nw = 1ifand only if (by induction)w F P? sub P’
andw F p®V(P? sub P7) andw F p®V(pRV(P? sub P7)) if and only if (by Proposi-
tion 6(b))w F P sub P’/ andw = p®V(P? sub P7). |

The ternary semantics Let B = B U { L} be theextended Boolean domaikie
use | to denote a “don’t care” situation, one where not all thetnalzations hold.
Boolean operators? and—?3 are defined on this domain as for the usual case with the
added rule that if any argument.is then the result ig..
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[ ¢ PPw —*[¢'TPw
[¢' &&"Pw = [¢TPw A° [¢"]w
1 if 3M : [¢'Pw[P — M] =1
0 if VM : [¢/JPw[P? — M] # 1 and

IM : [¢'Pw[Pt — M] =0

1L if VM : [¢'Pw[Pt— M] = L
1 ifwk P'sub P/

and[p®V(P? sub PH]Pw =1
[Pisub PIJPw = <0 ifwk P'sub P’

and[p®V(P? sub P)]3w =1
L if [pRV(Pisub PH)Pw # 1

[ex2 Piwhere p:¢'JPw =

The case of existential quantification above reflects thdtionh that if a withess\M
exists that makeg’ true, theny is true; moreover, if there is alf that makes)’ false,
and noM makesg’ true, theng is false; and, finally, if all withessek/ make¢ not
satisfy the restrictionp™V(¢’), thenw does not satisfyp™V(¢).

Something seems to be missing in these semantics: the enfent of a relativiza-
tion. The proposition below shows that the relativizatiaobles up automatically if
needed:

Proposition 9 Given assumption (5), the following holds.
(@) wk p™oe) & [¢]*w # L.
(b) wk ¢ &p™¢) & [o]*w=1
© wE"¢&p™¢) & [¢]Pw=0
Proof (Idea) The proof is similar to that of Proposition 8 and is tied. O

Part (a) states that the truth of all syntactic restrictiph¥(¢) is equivalent tqf¢]>w
not being.L.

3.2 Automata-theoretic realization of the ternary semantts

The decision procedure of Section 2.2 can be modified to te¢federnary semantics.

First, we classify states as eithigr0, or L states; that is, we replacg” of an au-
tomatonA, as defined in Section 2.2, with a valuation or labeling fiorck : Q — B+.
For a wordu, the valuation\(LASTA(u)) of the last state of the run overis the
truth valuecalculatedby A overw. We denote this valuel(u), and we callA a
ternary automaton Of course, the logic-automata connection can now be espdes
Ap(u) = [¢]3(u). Ternary automata can be minimized in the same way conveitio
deterministic automata are determinized with the diffeeetihat the initial state parti-
tion are the at most three maximal sets on whidh constant.
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Second, we modify the automata-theoretic constructionstte case of conjunc-
tion, we simply change the way product states are labelezh austate id if both
component states are one, itlisf both components aré, and it is_L if one of the
components id.. Negation is handled by simply switchigstates irD states and vice
versa.

Third, we must generalize the projection operators andriftdtion to the ternary
domain. We definerod?, BPROJ?, andruT?:

1 if3IM: A(w[P'— M]) =1
0 if3IM: A(u[P'— M])=0

PROJ' A = :
@) andvM : A(u[Pi — M]) # 1
L ifVYM : A@[Pi e M]) = L
1 if 3IM with max M < |u| : A(u[P? := M]) =1
BPROFIA() = 0 if 3M with ma>.(M <|u|: A(u[P* := M]) =0
andvM with max M < |u| : A(u[P* := M]) #1
1 if VM with max M < |u| : A(u[P":= M]) = L
1 ifFwesy :Au-v)=1
FUTS A) = 0 fIweXl :A(u-v)=0

andvv € X5" : A(u-v) #1
1L oifvwexi :Au-v) =L

Proposition 10
PROi’iA = BPRO‘?J(FUTZ}JA)

Proof Omitted. O

Fourth, we explain how these operators are implementedtasnata algorithms.
The construction ofUT3 A4 is quite obvious: we label any statefor which a path
along a null-but: extension to a state labelédexists; among the remaining states, we
label thosed for which a null-buté extension exists that leads tddabeled state in
A; and finally, those not yet labeled retain théHabel. In a subset implementation of
BPROJ, a subset is labeledif it contains a state labeled when it contains no such
state, it is labeled if it contains a state labele® and, when all states in the subset are
labeled L, the subset state is also labeled

We call the resulting algorithm thternary decision procedure

4 Ternary valuations for restricted languages

All languages considered will be regular and over the alph8b= B*. For a language
L, thecanonical right-congruence , is defined as ~, vifand only ifVw : v - w €
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L & v-w € L, whereu,v,w € X*. The set of congruence classes is denoted
¥*/~p. This set can be regarded as the state set of a canonica;dtaie automaton
recognizingL.

Consider languages, sometimes called theroperty, and R, assumed nhon-empty,
called arestriction Thus, L, and L prv(y), for p¥(¢) defined in Section 3.1, consti-
tutes such a pair for any subformuteof ¢9. Theconjunctively normalized represen-
tationis L’ = L N R, and theconjunctively normalized congruenise~ ;.

Note that Proposition 8 tells us thit]? is just the characteristic function for the
setL N Rwith L = Ly andR = L prv(g).

For a stringu, an accepting extensiomis a string such that - v € L N R. The
ternary valuationdetermined by, and R is a functionyr r(u), defined to bel if
wue€ LNR,0ifue LNR,andLif u¢ R.

Note that Proposition 9 tells us that tHaf]> = y . r with L and R identified as
above.

Theternary congruence-y, r is then defined by, ~, r v if for all w it holds that
xr,r(u - w) = xz,r(v-w). The equivalence classes of a ternary congruence can be
viewed as the states of a ternary automatomore preciselyA is (3, Q, g0, —, ),
whereQ = X%/ ~, g along with¢® = {u | u ~1 g €} and— are defined as usual;
moreover\ is defined so thatl(u) = xr r(u) holds—this make sense: the valuation
function X is constant on all strings reaching the same state. We saytlecognizes
x. Often, we will call A the x 1, g-automaton. Note that this automaton respecis
for any state, there is a uniquely determined equivaleressabf~  that all strings
reaching the state belongs to. This is just another way ofhgakiat~, r refines~p.
Obviously,~, r also refines-yng.

4.1 Relating the conjunctive and ternary semantics
A thin languageR is a non-empty set of strings such that
Yu,v:usdpv =>Vw:u-wg RVv-wé R (6)

In particular, it can be seen that the canonical automatoR fleas exactly one accept-
ing state: just make be a string that reaches one accepting stadestring that reaches
a different accepting state, andthe empty string.

Proposition 11
(@) Thefirst-order restriction Rsjngietoriy = {u € B* | Pi-tracki contains exactly
one occurrence of &} is thin.
(b) The$-restriction

Ry restiic(i) = {u € B* | the occurrences dfin P*-track are all in positions
no greater than that of the first occurrence af a
|n traCk$} ﬂ Rsing|eton($)

is thin.
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(c) If RandR’ are thinandR N R’ # (), thenkR N R’ is thin.

(d) Let R be thin, and letl be any language. i ~;~nr v andu has an accepting
extension, them ~, r v.

(e) If w andv both have no accepting extensions, theRp v < u ~1 g v.

(f) Assume thatR is thin. Then,X*/ ~, r is a union of equivalence classes of
¥*/~rpnr andX*/~g. More precisely, eitheE*/~, p= ¥*/~ 1~ holds or

Y~p = (Z/~rar \{SLAr}) US

holds, whereS;nr = {u | Yo :u-v ¢ LN R} andS = {S € ¥*/~p| Ju €
S:Vv:u-v¢ LNR}.

@) 1X/~enr | < |2 /~pr| < | /~par |+ |Z/~r |-1.
Proof

(a) We note that there are three equivalence classes condisg to this language:
strings containing zero occurrences, exactly one occoe;er two or more oc-
currences of a 1 in th@i-track. Considet; andv such that: 45 v. Letw be
any string, and assume that w € R. Thenu contains at most one occurrence
of a 1 in thePi-track. We must prove that- w ¢ R. Case(1): u contains no
1s in the P-track. Then by assumption that w € R, w contains exactly one
occurrence of 1 in thé®-track. But, by assumption that X v, v contains
either one 1 or two or more 1s. In all cases,w ¢ R. Case(2): u contains
exactly one occurrence of a 1. Thencontains no occurrences anccontains
zero or two or more occurrences. Thus, again it will hold thatv ¢ R.

(b) The proofis similar to the previous case. Also, it candsrsthat the intersection
with the singleton language is necessary for thinness.

(c) Consideru andv such thatu «#r~gr: v. Then, eitheru «r v oru «g w.
Assume the former and that w € RN R'. Then,w - w ¢ R thanks toR being
thin, and thus, - w ¢ RN R'.

(d) Letw be the accepting extension of Fromu ~p~r v, we infer thatv - w €
L N R. Assume for a contradiction that < v. Combined with the thinness
of R, and the fact that. - w € R, we would conclude that - w ¢ R. This
contradicts that - w € L N R. Thus, it must hold that ~z v. It follows from
elementary considerations that-;nr v andu ~g v implies thatu ~, r v.

(e) Assume that andv both have no accepting extensions and thatg v. Letw
be any string. Theny - w andv - w are both inR or none is. In the second case,
xr,r(u-w) = xr,r(v-w) = L. Inthe first case, it follows from the assumption
thatu andv both have no accepting extensions thatr (v-w) = xr,r(v-w) =
0.
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(f If Spnr is empty, then all strings have an accepting extension. Then it follows
by 4. that¥*/ ~rnr and */ ~, r are identical. Otherwise, whefi,r is
nonempty, it follows again by 4. that equivalence classes ofr and~, p for
strings that have accepting extensions coincide. Stringsdo not have such
extensions fall into equivalence classesf according to 5.

(g) This follows from (f).
O

From this proposition, it follows easily that for agythe regular language representing
the conjunction of the restrictions V() is thin if variables are subjected to only
first-order relativizations or t8-relativizations (or to both). The proposition also tells
us that:*/~, g is pieced together froE*/~ g plus a subset af*/~g.

4.2 The ternary decision procedure compared

Theorem 1 Assume that all relativizations are thin languages. If thevaata of rel-
ativizations have at mosV states, then the size of each intermediate, minimized au-
tomaton (representing some subformula) in the ternans®ecprocedure is the same,
to within an additive constant af — 1, as the size of corresponding automaton under
the conjunctive semantics.

Proof This follows from (g) of the previous proposition. O

This result is the justification for the practical use of thenary semantics since
usually the number of first-order variables in simultaneggssis quite small. But note
that the size of the additive constant is exponential in thealmer of free first-order
variables. Also, thanks to Proposition 11(f), we see thatahtomata of the ternary
approach are, apart from the*/ ~p parts, the same as those that occur when the
automaton of every subformula is normalized conjunctively

5 The sexpartite approach

We show next how to get rid of the boundedness assumptionéorEim 1. We do so
by re-introducing a normalization step at the usual plade®felativization where the
variable is introduced by a quantifier. This will allow us tape away states from the
automaton representing the ternary semantics. We want tagd all states following
a state if all these states have the same membership stdtusespect ta. whenever
they are inR.

5.1 Interesting strings, approximations, and sexpartificion

To proceed more rigorously, we define a strintp beinteresting(for L and R) if it
has (a) some accepting extension and (b) some extensbatied arejecting extension
such that: - v in L N R. Also, a“don’t care” extension is one that makes a string fall
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outsideR. Note that all prefixes of an interesting string are alsoregtng. In other
words, an uninteresting string cannot be extended so asctniinteresting. Note
also that ifu ~1~r v andu is interesting them is also interesting. Define the Boolean
valuation:;, r(u) so that it denotes whether a strings interesting. For an uninter-
esting string, letuT(u) be the shortest uninteresting prefix«wof Theapproximation
ar, r(u) of an uninteresting is defined by

1 if cuT(u) has an accepting extension
a(u) =<0 if cuT(u) has a rejecting extension (7
L ifall extensions ocuT(u) are “don’t care”

(These three cases are clearly mutually exclusive.)

Foru # €, we defineu™ to be the prefix such that - « = u for somea € X..

We note thatiftcuT(u) # ¢, thencuT(u)~ is interesting. Moreover, €uUT(u) = e,
thena(u) € {0,1}, since we assume th&t# ().

Whenu is interesting, we definer r(u) to bexr r(u). We make thesexpartite
valuation X%, r be the interest status together with the approximati;@@’:R(u) =
(t(u), a(u)). The valuationy§ p is also called thesexpartificationof x, r since it
can be defined from .,z alone. Thecanonical sexpartite congrueneg  is defined
from the valuation as for the ternary case. '

5.1.1 The exactness property

When L. and R are clear from the context, we often omit them as subscriptse
uninteresting equivalence classesf/x° are just that: ifu is uninteresting, with
(t(u), a(u)) = (0, X), then for any extension, (:(u), a(v)) = (0, X). Thus, the only
transition inX*/ ~% from an uninteresting equivalence class is to itself. Moego
there are at most three such classes.

The approximationv(u) satisfies the following properties: if is interesting or
x(u) is not L, thena(u) = x(u) holds; otherwise, it: is uninteresting ang () is
1, thena(u) may take on any value if0, 1, L}. The fact thatx(u) = x(u) usually
holds—with the only possible exception being tét) is L for an uninteresting—is
called theexactness property

We note that ifu is uninteresting and:(«) is not_L, then it is possible, and some-
what counterintuitive, that for all the valuey(u - v) is L. Whena(u) # L holds, itis
only foru = cuT(u) that an extension is guaranteed to exist such thgt - v) # L
holds.

5.1.2 Recoveringy® and y from «

In the following, we will be concerned only with the approxition valuationo be-
cause of the following property:
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Proposition 12 Let x% = (1, ) be a sexpartite valuation. Then the following property
obtains:

u)=1 & F%vtiafuw- ") =0 A afu-vt)=1

Thus, the approximation alone carries all the information of the sexpartite valoati
6

X -
We may even recuperatefrom o by using the operatox ; on valuations that for
aternaryy and a binary behaves according to

I x() ifplu) =1
(xxLp)(u) = {l i p(u) = 0 (8)

We write x x| R to denotex x  p, wherep is the characteristic function f&. Then,
it is easy to see that can be recovered from:

XL,R =0oarr X1 R

5.2 Sexpartification algorithm

Let us consider some properties-of r through a study of the automatenrecogniz-
ing it. First, we note that the notions of “interesting,” tapting extension,” “rejecting
extension,” and “don’t care” extension apply to statesAods well. So, we can par-
tition the states ofd into at most four sets, namely the set of interesting statasd
three sets of non-interesting states. The non-interestitgyare:N'!, which consists
of states allowing some accepting extension (but no rejgaitension);N°, which
consists of states allowing some rejecting extension (bwtatepting extension), and
N+, which consists of states allowing only don't care extensidcSome of these sets
may be empty; for simplicity, we assume that none is.

Second, we infer various properties from the definitiorygfz. (1) N+ is a sin-
gleton set (assuming that is minimal). (2) The only transitions among these sets of
states are as follows: — N°, I — N, — N+, N* — N+ andN' — N+, where
M — N means that there is some transition frato N. Thus, Figure 4 illustrates
the structure ok*/ ~p, g.

With these observations, we can present an algorithm caéiggartificationthat
from A recognizingy ., r calculates an automat@exp(A) recognizingxy, r.

First, we construct fron¥ a collapsedautomatonA’ by collapsing states in the
set N° to one state, which for simplicity we also call’. This state is defined to
have a transition to itself on all letters; in particulare thutgoing transitions, all of
which are toN*, are removed. (Of course, the removal of transitions is dsadth
the traditional ways of shrinking automata.) We do the saoneé\f'. If there are no
incoming transitions frond to N, we removeN . Each of the at most three states
of the formNZ is labeledZ. Each interesting state, i.e. each staté,ikeeps its label.
This completes the construction 4f.

Second, we minimizel’ to obtainsexP(A). The shape of this automaton is de-
picted in Figure 5.
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interesting

Figure 4: The transition structure &f / ~, g.

NO N1

uninteresting

interesting

Figure 5: The transition structure &f/ ~§ ».

Proposition 13 SexP(A) calculated through sexpartification from an automatbn
recognizingy ..,  is the minimal automaton recognizing, r.

Proof We consider the collapsed automatédhsince the second step does not affect
what is recognized. We consider only the case where the estiityg is interesting.
(Other cases are simpler.) It follows that the initial statenteresting. From the def-
inition of X% ., it can be seen that the state reached!irover a wordu correctly
identifieSaLﬁ(u) as long as the run stays within When a letter is such that the
run of A’ overw - a leavesI on the transition om, « - a is uninteresting, and it can
be seen from the definition of}  thatcuT(u - a) = u - a. Moreover, theVX state
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reached is such théf is the value ofvz r(u - a). Finally, we have already argued that
the equivalence class@s* allow no outgoing transitions except to themselves. Thus,
A’ so constructed recognizes, r. O

We state a set of necessary and sufficient conditions foblesing that an au-
tomatonA is a sufficiently good approximation gy, r for establishing that its sexpar-
tification is that ofa, !

Proposition 14 For establishingEXP(A) = ayz g, it is necessary and sufficient that
(i) for any interesting:, x1.r(u) = A(u) holds and (ii) for any minimal uninteresting
u, the following three conditions obtain

(N1) If LASTar r(u) = NY, then there is an accepting extension foof v and no
don’t care extensions.

(NO) If LASTay r(u) = NP, then there is an rejecting fot and no accepting exten-
sions.

(NL) If LASTay, r(u) = N1, then there are but don’t care extensiohs

Proof “<" Condition (i) makesA behave just likey, r for interesting states o and
conditions (N1), (NO), and (M) ensure that uninteresting states are correctly identi-
fied.

“=" (i) if w is interesting, thersEXP(A)(u) = ar r(u) = xr,r(w), butw will
also be interesting relative to the statesT A(u), and sexpartification will ensure that
A(u) = sexP(A). (i) (N1) Assume thatAsTay g(u) = N! and thatu is minimal.
Then there is @ such thaty, r(u - v) = 1. BUtSEXP(A)(u - v) = ar r(u-v) =1,
so A(u - v) is also 1. A rejecting extensiom - v, i.e. one such that(u - v) = 0
would also be impossible sensasT(SEXP(A))(u) is also theN'® state. (NO) is simi-
lar to (N1). (NL) SinceLASTA(u) is N+, there can be nosuch thatd (u-v) # L. O

For an automaton satisfying the conditions of the proposition is callesexpar-
tite automaton foi. and R.

Proposition 15 (a) [X*/~% | < [X*/~Lr |.
(b) ~L r may notrefine~ ..

(c) For interesting stringsy, r locally refinest’R, that s, ifu is interesting, then
u ~r, g vimplies thatu ~§ .

Proof Items (a) and (c) follow from the sexpartification constioiet The fact that
NGL’R is not coarser than-;, r can be seen by construction ofyacorresponding to
someL and R such that there is a string - v with « bringing thex-automaton into
a N°-state and withy from there driving the automaton into/é-state (which will
be unique). Also, there must be a strimgoringing the automaton into th&¥ - -state
without passing through any°-state. Theny. - v ~, g w holds, butu - v ~¢ , w
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does not hold, since after sexpartificationv leads to theV°-state, butw leads to the
N-1-state. O

We shall later (in Section 8.2) introduce a propertyrbthat strengthens (c) such that
~r,r and~§ p locally coincides.

5.3 Anexample

Consider the alphab&t = {a, b}, R. = {w | |lw| =0 mod 3},andL, =a-a-X*U
b-a-a-X* SinceR,. is the set of strings whose lengthlisnodulo 3, it follows that

R, is thin. The automaton recognizirdg. is shown in Figure 6, along with automata
for Xro.re andX%C_VRC. In figure, we have used diamond shapes for the states that are
labeledL. All states in the depiction 0)‘<6LC7 r. are interesting, except for the states
N%andN'!.

This example is constructed to show that after sexpartifinainteresting states
may no longer respeet g, even when the restriction is a thin language. (We have
already noted that the states pfrespect~pg, i.e. that~ r refinesR.) To see this,
consider the interesting-automaton stateg andq”, which correspond to different
~p, classes. They are fused as a result of sexpartification abecaren in the de-
piction of thexﬁLC’Rc-automaton. Incidentally, this automaton is isomorphi¢he
original one, except for the labeling of states. The exartipis shows how sexparti-
fication may, in lucky cases, completely undo the complisatf a restriction that is
conjoined to language.

g e

<

$ <l
&

Figure 6: Automata fol.c, XL¢,re» @ndx$ ., g

6 Conjunctions of sexpartite representations

In order to normalize restrictions to of tH®’ N R”, it is necessary to make further
assumptions. We say that restrictid’sand R” arecompatiblef the following holds:

Vu: (F iu-v" €R) A (F":u-v"€R") = (Fv:u-veRNR")
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Proposition 16 Any two restrictionsR’ and R” that are intersections of sets of the
form Rsingletors) @Nd Rs_restic(i) Of Proposition 11 are compatible.

Proof Left to the reader. O

Because can be recovered from(see 5.1.2), we may easily establish thatrnr =
SEXMAar,r X1 R x1 R'). Butitis obvious to ask whether the product R is re-
ally necessary; intuitively, it appears to be the case thaintformation is already built
into .z r. Although we will not need the result, we show that the praduith the
characteristic function oR in this identity is indeed unnecessary wherand R’ are
compatible:

Proposition 17 If R andR’ are compatible, then

QL ROAR = SEXP(O[L,R X R/)

More generally, if we replacer, r with any sexpartite automatds for L and R, then
QL RNR = SEXP(B X R/)

Proof We use the method of Proposition 14, whé&ef the proposition isz N R’ and
Aisap g %, R'. (For the more general formulation, the argument is siméacept
thatay, g is replaced byB. The exactness property and the notion of interesting remai
the same.)

Case(i): The stringu is interesting fo andRNR’. We must show that,, rrr/ (u) =
A(u). We note thatu is also interesting foi. and R; so, by the exactness prop-
erty, XLR(U) = aL,R(u) holds. By definition OfXL,RﬁR’r we havexLRmR/ (u) =
(XL,r X1 R')(u) = (ar,r XL R')(u). Thus,xr, rar (u) = A(u) holds.

Case(ii) We now assume that is uninteresting and that— is interesting.

SubcaséN1) Assume thatASTay gar (u) = N1

First, we prove that there is an accepting extensiod iflom LASTA(u). Letwv
be such thak rnr (u - v) = 1 (such av exists becauseasTa(u) = N! andu is
a minimal uninteresting string). Thusg,- v € RN R’ holds. In particulary - v € R
holds, and by the exactness propegty,z(u - v) = ar gr(u - v)=1 holds, whence we
infer that(ar, g x 1 R')(u-v) = 1. Thatis, there is an accepting extensiondin

Second, we prove that there is no rejecting extensiohfirom LAST(u). To do so,
we assume for contradiction that there is such tha{a g x . R')(u-v) = 0.

Now, if - v is interesting foilL andR, thenxr r(u-v) = ar r(u-v) = 0 (because
of the exactness property and because we just assume@thatx , R')(v-v) =0
holds). Moreover, we know that- v € R’. Thus, we also havgr pnr/(u - v) = 0,
but that contradicts the assumption thasTay, rrp (u) = N

So, we may assume thatv is uninteresting fol. andR. But, sinceu is interesting
for L andR andu - v is not, there is & such that. - @ is uninterestingu - @ is a prefix
of u - v, andu - 4~ is interesting. Moreover, there istasuch that - & - o € L N R,
because of the minimality of - 4 as an uninteresting string and becauger (v - @) is
also0 by definition of the approximation function. (For the moreageal formulation,
we note thatd(u - &) may be eitherl or0.)
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By assumption thata, g x 1 R')(u - v) = 0, we have that. - v € R/, whence
we may findv’ such that. - 4 - v* € R’. By the condition of compatibility, we find a
v suchthat -4 - o € RN R'. By the exactness property applied twice, we find that
XL.r(u-4-0)=1andxr ror (u-4-0) =0, thatisu- - visin L and is notinL.
This is a contradiction. Thus, there is no rejecting extamsi
Subcase (NOyhis case is similar to that of (N1).

Subcase (M) Assume thatASTar pars (u) = N+, We must prove that every exten-
sion in A from LAST(u) is rejecting. So, let be a string so thatl(u - v) /AL, say
A(u-v) = 1. Thenu - vis thenR’, butif u - v € R also held, then we could not have
LASTar pnr (u) = N+ by the exactness property; thus, v ¢ R holds.

By our assumptio (v - v) = 1, we infer thatvy, r(u - v) = 1 holds, and that - v
is uninteresting fol. and R—if u - v was interesting, theaz, z(u - v) should bel by
the exactness property, singe v ¢ R holds. But, since: is interesting for. and R,
we may find ai such that: - 4 is uninterestingy - .~ is interesting, and - ¢ is a prefix
of u-v. Hencegq g(u - 4) is alsol (or, in the general case, possihly and there is a
© such that,-4 -9 isin LN R. Also, sinceu-v € R’, there isv’ such that-4-v" € R'.
By assumption of compatibility, we can then fiiduch that, - & - visin RN R’. In
particular, since: - .- ¥ is in R, we have thakr r(u-4-9) = 1 by the exactness prop-
erty. Also, by the exactness property and the assumptidntsxay, prg (u) = N+
we have thak ; rnr/ (v - @ - 0) = L, which is a contradiction. O

The condition of compatibility in Proposition 17 is neceysdo see this, consider
the languages, R, andR’ defined in Figure 7, where we have also shown the transition
structure of an automaton f@r. Each state is labeled withor 0 according to whether
it accepts or not; additionally, each state is marked withrttembership status of a
string reaching the state with respectf@nd R’. The idea is to construgt, rnr’ SO
that thea;, rnr/-automaton already anenters theV'! state, see Figure 8. It will do so
because after all extensions, except the empty string, lead to statesnBti R’ and
because: itself is in L, R, andR’. Intuitively speaking, the future has been restricted
to 1 except for most places, which are outside the restrictiorwohtrastoy, r “sees”
more don't-care extensions of including some that af@ Thereforen, r only goes
into an uninteresting state after readingor ab. Moreover, we have arranged it so that
aaais in R, but notinR (otherwise oz, r~r Would not enter théV'! state oru); this
is the source of the failure (fExP(a, r X1 R’) to become identical tor, pnp as
can be seen in Figure 9. Technically, the compatibility feznent fails for the string
aa: the empty extension brings it in® and the extensioa brings it intoR’, but there
is no extension ofia that brings it into both.

Proposition 18 a v r = SEXP(ar r A® arr r). More generally, if we replace
ags,g With any sexpartite automata®’ for L’ and R anday,» r with any sexpartite
automatorB” for L” andR, thenay .~ r = SEXP(B’ AL B").

Proof Again, we model our proof on Proposition 14. For notationalpdicity, let
o = apnprr, & = ap g, anda’” = apr r. We use of the conventions for the
ternary valuations, x’, andy”. (For the more general formulation, the argument is
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L ={a,ab¥*}
R = ¥*\a3%*
R = {e,a,b%*,a®>L*}

Figure 7: An automaton for a languagevhere restrictiong2 and R’ are not compat-
ible.

OE
1)
N

Q1 RNR/ QLR

Figure 8: The approximation automata for

similar, except that! is replaced byB’ andca” is replaced byB”. The exactness
property and the notion of interesting remain the same.)
Case (i)Let u be interesting. Therefore, thé-automaton on: is not in N+ and the
o'’-automaton is not ifV-. Moreoveru is interesting for.’ and R or for L” andR;
assume the former, without loss of generality. Thefiu) = o'(u) holds. Sincex”
onu is notin N1, the following holds: ifa” (u) is L, thenu is notin R and if o (u)
is not L, thena’(u) = X" (u); in either case, we have thatu) = o/ (u) A3 o (u).
Case(ii). Let u be uninteresting with.~ interesting.
SubcaséN1) Assume thatASTay, rnr (u) = N1. Then, thereis a such thaty (u-v)
is 1, whence/(u - v) andx” (u - v) are also 1. By the exactness property, we infer that
o/(u-v) anda”(u - v) also are 1.

Assume now for a contradiction that there issuch thata g (u-v) A2 g(u-
v)) = 0 holds. Thusqy/ r(u-v) andar r(u-v) are both 0. If they' -automaton has
entered theV® state aften (in the general case, read M state”) or after a longer
prefix of u - v, then there is & and ao such that: - ¢ is a prefix ofu - v andw - ¢ - ©
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Figure 9: The approximation automaton r x | R’ and its sexpartification.

isin L’ N R. But then,x(u - 9 - ) must be equal t0, which is inconsistent with the
subcase assumption thatsTay, rnr/(u) = Nt So,u - o is interesting forl’ and R
and, of course by similar reasoning, fbf and R. Hence, we have that (u - v) and
X" (u - v) are both 0, but that contradicts again the subcase assumptio
Subcasé€NO) This case is similar to subcase (N1).
SubcaséN L) Assume thatASTay, rnr/(u) = N+t. Then, for allv, u - vis notin R,
whenceu is uninteresting fof.”’ andR. In other words, both tha’-automaton and the
o’-automaton are in an uninteresting state after reading

Now fix v. We must prove thatoy g (u - v) A® apr gr(u-v)) = L. So, the only
interesting cases are that both automata entered integestéites that are nat-. For
example, we may assume that both entered\thestate (in the general case, read “an
N1 state”). (The other three cases are similar.) Then, thers exist a prefix:’ of
u such that' is uninteresting fol.’ and R and minimal for this property. A similar
uninteresting prefix”” exists forL”” andR. Without loss of generality, we may assume
thatu’ is a prefix ofu”. We know that for,”~ there are extensions in bafHNL”" N R
andL’ N L" N R. Moreover, foru” all extensions are iR or in L' N L' N R and there
is an extension ik. Therefore, thex-automaton must enter thg' state onu. That
contradicts the subcase assumption. O

7 Sexpartite semantics for WS1S

We define]¢]° to be the approximation functiamfor the ternary valuatiory = [¢]°.
The challenge is to calculate the approximation functioa obmposite formula from
those of its constituents. For basic formulas, the appréaekiident: we defings]®

to be the automaton (or functiosexP([¢]*), where we adopt the convention that
sexpartification calculates the approximation functiost, the sexpartite valuation, as
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explained in the remarks after Proposition 13. The othezsase treated below.

7.1 Sexpartite negation

For negationp = —¢', we defing[-¢']® = —3[¢']°. There is an obvious automata-
theoretic algorithm for achieving this operation. It hofdsreasons of symmetry that

if [¢']° = sEXA([¢']%), then[-¢']® = sEXK[-¢']?) = =*[¢']°.

7.2 Sexpartite conjunction

For conjunctionp = ¢’ A ¢, the case is more complicated, sineg]* and [¢"]?
may be based on different restrictions. Assume filat L prv(gry, R’ = L prv(grmy,
and thatR = R' N R" = Lprvg). Moreover, definel’ = Ly, L"” = Ly, and
L= L¢ = qu ﬂL¢//.

We can express the semantics of conjunction according to:

[¢" A ¢"1° = sEXP(([#']° A° [¢"]°) x 1 p™(9)) (9)

This is correct: iff¢']® = oz r and[¢"]® = ar» g~ hold, then we have the follow-
ing identities:

SEXP(([¢']° A° [¢"]°) x 1 p™(9))
= SExA(([¢']° xL pP™(@) A ([6"]° x 1L P™(¢")))
SEXP((O(L/’R/ X1 R A3 (OéL”,R“ x 1 R")
SEXP(xL/.r N° XL/ ")
SEXF([¢']* A [¢"]°)
SEX([¢]?)
— [[¢/ A (b”]]ﬁ

7.3 Sexpartite projection

We fix an indexi as found in the existential quantificatign= ex2 P where p: ¢'.
To simplify notation, we write, for the stringu[i +— M].

Proposition 19 For a given ternary valuatioy’ = x/ r/, we definey = PROJ"*y/
andR = {u | x(u) # L}. Assume that there is sonf® with R’ = RN R'. Moreover,
assume that for atk

ue€R =VYM:uMcR (10)

holds. Then these equalities between functions holds:
x = PROF'y’ = PROJP(SEXPY' x| R") x| R

Proof We use the following notationi’ = SExPy’, ' = RN R! B’ = o/ x| R, and
B = PROJ*B’. We must prove that = B x| R.
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Claim 1 The following three properties hold:
i x'(u) # L= B'(u) = x'(u)
ii. ue R= B'(u) =x'(u)
ii. we R= B(u)=x(u)
Proof

i. Assume thaty’(u) # L holds. Then, we know by the exactness property that
o' (u) = x’'(u) holds. Moreover, from assumptiof® = RN R’ andx’(u) # L,
we know thatu is in R?. Thus, we conclud®’ (u) = (o/ x| R)(u) = o/ (u) =
X' (w).

ii. Assume thats isin R. If u is also inR?, theny’(u) # L, and we use (i). Ifi is
notin R, thenB’(u) = (o/ x, R)(u) = L = x'(u).

iii. Assume thatu € R. Consider anyM. Thenu is in R by (10), so by (ii),
B'(uM) = x/(uM). Thus, according to the definition of projection, we obtain
that B(u) = x(u).

a

From (iii) of the Claim, we infer that (u) = (B x 1 R)(u), since thex | -product with
R takes care of the situations wheris not in R. O

Then, the following identity holds:
[ex2 Piwhere p: ¢']% = SEXA(PROF([¢']® x 1 p) x1 p™V(0)) (11)

To see the correctness of this identity, note tRat {u | x(u) # L} is the set of

w such thatw = p™V(¢) (by Proposition 9(a)); similarlyR’ = {u | x'(u) # L}

is described by®V(¢'). Additionally, R* can be chosen to be the set represented by
p. Thus,p™V(¢') is equivalent tgp™V(¢) A p (where we for convenience we assume
that P’ occurs ing’). Thus, the identity?’ = R N R’ holds. Also, the condition (10)
holds sincep™V($) does not depend on th&'-track. Thus, from the Proposition the
following equalities obtain:

SEXP(PROI([¢']® x 1 p) x 1 p™(¢))
= SEXP(PROJP (o’ x| R;) X1 R)
SEXP(PROJ y)
SEXP([ex2 P! where p: ¢']?)
= [ex2 Piwhere p:¢']°

8 The sexpartite decision procedure
Propositions 18 and 19 are not quite as appealing as we wigatddoth involve ex-

tensive normalization. Fortunately, for first-order #nerestrictions, we can show that
the normalizations are superfluous or can be made compuddfignexpensive.

34



8.1 Orthogonality of conjunctions of thin languages

In the sequel, we will often see that the state of fk@utomaton is implicitly de-
termined by the state of a sexpartite automaton. Sometikmesying the state is
important, since a product construction with tReautomaton is to be carried out from
r. Since it is the goal to avoid the construction of the f@flautomaton, we need an
effective way of representing its states. We will take adaga of the following prop-
erty.

Proposition 20 Let R = R; N --- N R, where eackR; is a thin language. & ~g v
and there is a such that - w € R, then for alli, 1 < i < n, it holds thatu ~g, v.

Proof Assume that: ~r v andu - w € R hold. Moreover, for a contradiction, assume
that for somei, u g, v holds. By assumption thak; is a thin language, either
u-w ¢ R;orv-w ¢ R; holds, whence from the faet- w € R;, we infer that
v-w ¢ R; holds. But then, we would have that w ¢ R, which contradicts the
assumptionsthat - w € R andu ~g v. O

The proposition entails that if we know that a statim an automatord determines a
stater of the automaton foR (in the sense thatu : LASTA(u) = g = LASTR(u) =

r) andr is not the rejecting sink state, thens determined by the tuple of states of the
Ri-automaton.

8.2 Crispness

The identification of different interesting states (aftelapse and minimization) that
we saw in the example of Section 5.3 makes it difficult in gahtr recover the state
of the R-automaton from the sexpartification. Fortunately, thisqdmenon does not
occur for the restrictions that we interested in.

Let us consider languagésand R as expressed through= x 1, r. Let us say that
stringu is readily distinguishedrom v if there is a letter € ¥ such that for alkw it
holds thatu - a - w ¢ R but there is av such that: - a - w € R. Intuitively speaking,
the automaton for? is in a non-accepting sink\ or N1) after reading: - a, but it
goes into a state from where it can still accept after reading We say thaR? is crisp
if for all « andv with u £ g v, eitheru is readily distinguished from or v is readily
distinguished from.

Crispness of? ensures that sexpartification does not merge interestitgssofy
that are not equivalent with respectg;.
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Proposition 21 Assume that? is crisp.
(@) ThenVu,v: tp r(u) A u N6L,R v = u ~pg v holds.

(b) Moreover, ifR is also thin and. is interesting, them ~; r v < u N%_’R RS
U ~LNR V.

(c) Consider the automatofi for . N R and thex-automaton representing the ap-
proximation valuation fod, and R. Then there is a transition-respecting map-
ping f from the states ofd, except the rejecting sink state, to the states of the
a-automaton except for th& and N+ states. On this domain and codomain,
f is surjective.

Proof

(a) The proof is by contraposition. We assume tifa) andu «£r v. If «(v) does
not hold, then, 76%71% v holds, becausgw) holds by assumption. Thus, we may
further assume tha(v) holds. Letq’ be the state reached in theautomaton
onu, and letq” be defined similarly fow. We may assume that it is that is
not readily distinguished from according to some letter. Then, it will be the
case thatq’,a, N*) and(q”, a, q) are transitions of thg-automaton, where
is different fromN+. Consequently, the statgsandq” are not united during
the minimization phase of sexpartification.

(b) The first bi-implication follows from (a) and Propositid5(c). For the second
bi-implication, the relatior= holds because-w € LNRifand onlyif (u-w € R
impliesu-w € L) if and only if (by the exactness property and by the antecede
u~$ po)ifandonlyif (v-w € Rimpliesv-w € L)ifand onlyifv-w € LNR
for; the direction<= holds by virtue Proposition 11(d), which relies on thinness
of R.

(c) It can be seen that the subautomaton induced by the étilegestates of the
ag, g-automaton is identical, except for state labels, to a swivaaton of A.
(A subautomaton maybe incomplete: for some states andslabeloutgoing
transitions may be defined.) Consequently, the notion ef@sting state make
sense forA. A transition out of this set off interesting states corggs in
X% .r to a transition to theV', N+, or N state. In the latter two cases, the
A automaton proceeds to a rejecting sink state (this is whyamaat map the
rejecting sink state to a state of thg, r-automaton). In the first case, the
automaton state reached is mapped\tti so is every other state, except the
rejecting sink state, that is futher reachable from thitesta

a

Part (c) of this Proposition is a key property: it tells ustthide automaton of the
conjunctive representation is the same as the automatbe sEkpartite representation
except that the latter represents by at most three statemihiresting states.
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Proposition 22 Any languageR C ¥* that is the conjunction ORs _restricys) fori < k
and Rsingletor(s) fori € S, whereS < {0,...,k —1} and where thé®*-track is used to
encode the variabl® is crisp.

Proof We proceed somewhat informally by directly studying theoauwdtonA for R.

In particular, we fixt = 3 and we assume th&t= {1, 2}. The automaton! is shown
in Figure 10. We note that it has an accepting state, reaahigdhtier the firstl in the
$-track has occurred and after each of the first-order varighcks has seen exactly
one occurrence of & It also has a rejecting sink. The remainifgstates keep track
of which 1s have occurred for first-order tracks. All states excepsthk state has a
transition to the sink state in addition to a transition tma4sink state. i

Figure 10: The automaton for first-order ahestrictions onP! and P2.

The two preceding propositionstell us that the sexpasijpeasentation of M2L(Str)
subformulas in an WS1S encoding is identical to that of theay representation,
except for the collapsing aVZ states in the ternary automaton. In particular, each
interesting state specifies the state of each restrictitonaaton. This fact will help us
formulate algorithms for conjunction and projection thabid most explicit normal-
ization.

8.3 Algorithm for conjunction

Given automata for” = «ay/ g anda” = ar~ g, which are approximations based
on crisp, thin, and compatibl®’ and R”, a product automatoB = (3, @, qo, —, A)
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recognizingarnr rnr- €an be constructed as follows. We assume thatathe
automaton g%, @', ¢}, —', \') and thea”-automaton g%, Q”, ¢, —",\"). The
languageR’ is represented by an automat@n, Qr, ¢%/, —r', Q%) and R” is rep-
resented by an automatdR, Qr, ¢%., —r+, Q%.). The state of the?’-automaton
that is a rejecting sink is olenot@@j (it exists by the assumption thaY is crisp); the
stater;,; of the R”-automaton is defined similarly.

By the above assumptions and Proposition 22(b), any integestateg’ of theo’-
automaton determines a stateof the R’-automaton; a similar observation holds for

the o’’-automaton. We now let

Q:Q/XQ” U Q/XQR’ U QR’XQH U {NlaNoaNL}'

Assuming again that the initial states are interesting ytmcdhvarious special cases),
we letgo = (q{, q) ). To define the transition relatior of B, we introduce the relation
SonQ' U (Q R”\{Trej ) U {N° N-} defined according to:

¢~'q it (¢,a,q) €= andd is interesting
S if (¢,a,4) €', q istheN!-state, and”’ is determined by}’
¢~ Nt if (¢, a,q) €—'" andd’ is the N -state

q !N it (¢, a,§) €—' andq’ is the N-state

r w’f’ it (r',a,7") e—pr and?’ # TreJ

P S NL i (1 a,7) €—poand? =1l

J

Note that in the second line aboieis notr;; becausg’ is the N'-state (and)’ thus
determines a state of thie¢/-automaton that is not,;). The transition relatior™” on
Q" U (Qr\{riy;}) U{N?, N+} is defined similarly.

Now, define— of the automatorB to consist of the following transitions for a
lettera, wheres’ <5/ 8" ands” <5 §'':

((s',8"),a,(3',8") if s,s"¢{N° Nt}andE € Q ors” € Q")

(s, )aNJ-) if &=Ntorsg” =N+t

((s’,s ),a, Nt if s’ eQr ands” € Qr~

((s',8"),a,N°) if (8 =N%ands” # N+t)or (5" = N"ands’ # N*t)
Here, N°, N1, and N+ are sink states, for which takes on the value, 1, and L,
respectively. For states of the forfa, ¢”’), we define\((¢’, ¢")) = N (¢’) A3 X'(¢").
For states of the forniq’, "), we definex((¢,r")) = N(¢), if 7" € QE,, and
M(¢', ") = L, if v ¢ QF,. As in the usual algorithmic treatment of product
automata, we consider in the following only the state®dhat are reachable from the
initial state.

Proposition 23 The automato® constructed above recognizesnr r'nr~. More-
over, there is a surjective mapping from the reachable switehe non-minimized
product automaton fofL N R’) and(L"” N R, except for the rejecting sink state, to
the reachable states 6f (except for one state).

Proof (Idea) Using the exactness property, we seexthat, rnrr = (o' AN3a”") x |
(R/ N RN) = (O/ X1 RN) A3 (O// X1 R/) Thus, it holds thahL/mL//7R/mR// =
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SEXP((o/ x 1 R") A® (& x, R’)). Now using Proposition 17, we may evaluate
SEXP((o/ x 1 R") A3 (o x| R'))as

SEXP(SEXP(a’ x | R") A® SEXP(@” x| R')) (12)

To reflect the expressigBEXP(a’ x| R"”) A3 SEXP(a” x| R’) in (12), we make an
automatonC' based on tuples of the forif{¢’, "), (¢, ")) when states/ and ¢”
are both interesting. The stateg'sandr” are determined by’ andq”, respectively.
The assumption of compatibility ensures that if bgthand ¢” are interesting then
(¢’,r") of o/ x, R" is also interesting. The pafy’, ") can be viewed as a state of
SEXP@’ x; R') because the interesting part@f x ; R” is locally isomorphic to
SEXP(@’ x ) R") (due to crispness and thinness and Proposition 21(b)).

But sincer’ andr” are determined already by andq”, respectively, we may
generate an isomorphic subautomaton for states of the farm"’), (¢”, r')) by just
considering tuples of the forig’, ¢”'). This is how the automataB acts for interesting
states: it simulate€'. We note that during the construction of thé x @Q”-part of the
state space aB it is possible to simultaneously keep track of the deterchiri@ndr”
states—information that is needed in some cases wheng” turn to N'! states. We
omit a detailed discussion, but we remark that this auxiliaformation is needed only
for the frontier or queue of not-yet-fully explored prodstates; the information does
not need to be stored along with the states.

We are not done describing the simulation. Say that on soamsition the pair
(¢',q") becomegq’, ¢") with ¢’ being theN!-state andj” still interesting. The sex-
partification ofo’ x | R” then yields anV!-state as well. Therefore, the automat®n
enters a stateV?!, (¢”,+')). Thus, to continue simulating i@ automaton using pairs,
we let theB automaton enter the stat#’, ¢”); this is explained in detail through the
rules that define its transitions. If instead a transitiansdq’, ¢’’) into (¢’, ¢'") with ¢’
being theN?-state, the the simulation of th& automaton may be stopped, since the
outer sexpartification in (12) will yield either aN® or an N+ state. Other cases are
explained in a similar vein.

Finally, the surjective mapping from the product automaibthe conjunctive se-
mantics is constructed from the mappingsand f” that exist according to Proposi-
tion 21(c). O

8.4 Algorithm for projection

To formulate an algorithm for projection that largely do@sg with normalizations,
we substitute the identitproF*A = BPROJ!(FUT®?A) of Proposition 10 in the
reformulation of projection in Proposition 19. Thus, owarsing point is the identities

ar,r = SEXP(PROF\L/ r/)
= SEXP(PROF!(ar g x1 RY) x| R)
= SEXPBPROF(FUT>(ap g x 1 RY)) x1 R)

where we use the notations of Proposition 19. The challenge construct a subset
automatonE recognizingePROJ (FUT*! (o, g x 1 R?)) and to avoid the subse-
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quent product< ; R. To do so we focus on representing. r x R’ as an equiva-
lent automatonD. We note that each interesting statef the o’-automaton (where
o' = ars p) determines a staté of R'. So, in analogy with the construction of the
automaton for conjunction, we may omit il the explicit construction of pairs cor-
responding tax;/ g X | R*. And, when then s p/-automaton exits to afnv!-state,
the automatorD simulatesR’ whose rejecting states are then relabeledA state
from this copy of R’ is denoted-, . Similarly, when then . r -automaton exits to
an NV-state,D also simulates?’, but the accepting states are now labeeahd the
rejecting states are labeled. A state from this copy of?’ is denoted® . When
ar p-automaton exits tov 1, D also enters &V -state. To avoid thex | R product,
we note that any subset @f containing an interesting stageof o’-automaton deter-
mines the state of R; also, any subset containing no interesting states carpteces
by someNZ4-state, and the< ; R-product is again unnecessary, because of the outer
sexpartification. Thus, the effect of the, R-product can be effectuated by a simulta-
neous traversal of the subset automaton and the autom@atehere subset states not
satisfyingR are labeledL. We also note that if a subset contains say béthand N+
then N can be removed without changing the accepted language;geoaerally, we
may prune all subsets states so that they contain at mostormmteresting state.

Proposition 24 Given the assumptions of Proposition 19 and the furtherragsan
that restrictions are crisp and thin and that the automAtdescribed above recognizes
SEXP(PROP "\ 1/ R!).

Moreover, the number of states Bfis at most\V - 2/%:l+1 whereN is the number
of subset states encountered when determinigingoJ (FUT*F'), where F' recog-
nizesl' N R'.

Proof (Idea) We have already outlined the reasons why the abowrcation is cor-
rect. As regards the size df, we study the partial mapping from states of the
automaton?’ recognizingL’ N R’ to states of thex’-automaton that exists according
to Proposition 21(c). We note that this mapping is undefinalgt éor the rejecting
sink stateg,; of F', since there are two corresponding staf€§,and N+, in thea/-
automaton.

We may define a mapping that maps stateg of F' to subsets of” defined as
follows: if ¢ is interesting then leg(q) = {q¢'}; if ¢ is not interesting, but allows
an accepting extension, then létbe the state of thé&‘-automaton determined (by
Proposition 11(d) and Proposition 20) and () = {r }; and if ¢ is g.;, then
g(q) = {N+,NY U {r") | " # 1 }. Then, for any string., the subsefV of states
of E reachable on is related to the subsat’ of reachable states 6073 F onu:

N = quMU(Q)

for some functiors that selects a nonempty subsetgd§), whereq € M. The nu-
meric bound of the proposition follows from combinatoriabperties ofy: only onegq
is mapped to a non-singleton set and that se{ Rgs+ 1 members. O
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8.5 The sexpartite decision procedure compared
Theorem 2 For first-order an@-restrictions, WS1S can be decided in a way such that

(&) The sizes of the intermediate automata occurring duhagexpartite decision
procedure are at most those of the conjunctively normaléssdantics, except
for the subset construction (and before minimization), nehtbe automata of
the sexpartite decision may be up to 32 times bigger. Thesadswignore an
additive constant of.

(b) The conjunctively normalized automata may be expoa#iyitbigger than the
sexpartite automata.

Proof

(a) Thatthe property holds for minimized automata follovesri Proposition 21(b).
The bounds on the number of states come from Proposition 83Paoposi-
tion 24, where we have used the fact that the bigg&sautomata stem from a
simultaneou$-restriction and a first-order restriction, which yield ari@amaton
with 4 states. Thus, the factor of Proposition 224$! = 32.

(b

~

It suffices to consider a subformula of the fapm _vars = ((--- (p' = p' & -+ )&p’ =
p’), where eachy’ is a first-order variable. The sexpartite automaton has one
state, namely ailV! state, whereas the automaton for the conjunctively nor-
malized semantics has + 2 states. To see this, fgr = 2, contemplate the
automaton of Figure 10, which is identical to the automatotaimed under the
conjunctively normalized semantics and which Bas+ 2 = 6 states. The sex-
partification for this formula operates on the same automei@ept that the 5
rejecting states are turned intostates. Consequently, a single' state arises
from the collapse.

9 In practice

We showed experimental evidence in [8] that WS1S could bastsafway to decide
string-theoretic problems as M2L(Str) but only after sames solving by hand state
explosion problems like the one discussed in Section 2.4.

Since June 1998, the Mona tool has been based on the ternaaptes for WS1S,
and our state explosion problems stemming from running Ns2i) formulas through
WS1S have disappeared. Moreover, with a default relatiizanechanism that we
have added to Mona, M2L(Str) formulas can be directly embddd WS1S. The run-
ning times under these semantics are in all non-contriveeictne same (to within 5%
or so) as for the ad hoc semantics we used before. (In prasteaised first-order
relativizations that are not thin languages, but which gsjmilar properties.) Thus,
we can state that also from a practical point of view the teples presented here solve
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both the translation problem and the first-order semantiocblpm. We have not yet
implemented the sexpartite semantics.

Future work should look at factorization techniques thatildde more generally
applicable. Consider for example the formta= @Q & P15t vars, Wherediss—vars
simply introduces a numberof first-order variables (as described in the proof of The-
orem 2). This formula produces automata with a number oéstakponential iry,
even under sexpartification.

Also the sexpartite semantics should be investigated ictipeg the factor 32 blow-
up of subset automata before minimization may turn out to tieearetical limit that
is never encountered in practice—perhaps, a tighter aisali show that it is too
pessimistic.
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