
IPTEL2001 100

ECLIPSE Feature Logic Analysis
Gregory W. Bond, Franjo Ivančić, Nils Klarlund, Richard Trefler

fbond, trefler, klarlundg@research.att.com
ivancic@gradient.cis.upenn.edu

Abstract—ECLIPSE is a virtual telecommunications net-
work based on IP. It is the result of an ongoing research
project at AT&T Labs – Research that is investigating next-
generation telecom service architectures. The ECLIPSE
Statecharts language was developed to simplify feature (ser-
vice) development, for example call waiting, by supporting
a smooth transition from design to implementation and by
supporting automated semantic analysis. The modular na-
ture of ECLIPSE features necessitates that they utilize well-
defined protocols for communicating with one another. If an
individual feature fails to obey the protocol then it is likely
that subscribers to the feature will be unable to complete
calls. This paper describes a tool that uses the Mocha model
checking tool to analyze ECLIPSE feature modules to en-
sure that they satisfy the specified protocols.

Keywords— DFC, Distributed Feature Composition, tele-
com services, voice over IP, VoIP, UML Statecharts, Mocha,
model checking, Java

I. INTRODUCTION

E
CLIPSE is a virtual telecommunications network
based on IP. It is the result of an ongoing research

project at AT&T Labs – Research that is investigating next-
generation telecom service architectures. The ECLIPSE
network is intended to support multimedia telecommuni-
cation services involving voice, video, and text in seam-
less composition. The ECLIPSE network is designed to
be device-independent to accommodate today’s range of
soft and hard devices such as cable phones, Microsoft
NetmeetingTM, AOL Instant MessengerTM, as well as mul-
tiple external networks such as the public switched tele-
phone network (PSTN). ECLIPSE provides a framework
for rapid development and deployment of telecom ser-
vices. It also provides a framework for managing “fea-
ture interaction,” a problem that has hampered customiza-
tion and rapid innovation of services in traditional tele-
phony. ECLIPSE is an instance of Jackson and Zave’s Dis-
tributed Feature Composition (DFC) virtual architecture
[1]. DFC provides a framework for exposing and man-
aging feature (service) interactions in multi-party, multi-
feature (service) and multi-media “calls” in telecom net-
works. ECLIPSE implements DFC in an IP setting.

G.W. Bond, N. Klarlund and R. Trefler are located at AT&T Labs –
Research, Florham Park, NJ, USA; F. Ivančić is located at University
of Pennsylvania, Philadelphia, PA, USA

The ECLIPSE Statecharts language, hereafter referred
to as “ECLIPSE Statecharts”, was developed to meet the
needs of ECLIPSE feature developers. Before ECLIPSE
Statecharts was developed, ECLIPSE features were imple-
mented using a general programming language (Java). It
became clear early on that using a general programming
language was inadequate for this purpose since it was easy
to introduce faults into the feature logic, even for the sim-
plest of features. For example, developers would forget
to account for possible feature states, they would neglect
to account for messages that might be received from the
feature’s environment, and they would respond incorrectly
to messages received from the environment. For a more
complicated feature like call waiting, which involves mul-
tiple parties, the problems were worse since the number of
states and possible interleavings of messages exchanged
with the environment were much greater. ECLIPSE State-
charts was designed to address these problems.

ECLIPSE Statecharts is a customized version of the
Unified Modeling Language (UML) Statecharts behav-
ioral description language [2], [3]. The UML Statecharts
language, hereafter referred to as “UML Statecharts”, is a
graphical language for describing hierarchically structured
state machines. Since it is a graphical language based on
state machines it is well suited for describing the high level
behavior of system structures. The language supports hi-
erarchically structured state machines so it is possible to
describe complex behavior with simple diagrams. The lan-
guage also supports a number of concepts that are useful
for describing timed, reactive systems, for example con-
current state machines, timed transitions, and a number of
inter-object and inter-state machine communication mech-
anisms. In addition to being a powerful behavioral de-
scription language, UML Statecharts is part of the Object
Modeling Group’s UML standard for object-oriented sys-
tem modeling. For this reason, a growing number of tools
are available or in development to support the language.

As a design language UML Statecharts might have suf-
ficed for describing the high level behavior of ECLIPSE
features. However, by incorporating a number of
ECLIPSE concepts into the language, it is possible to for-
mally translate an ECLIPSE feature design to an imple-
mentation. Indeed, experience has shown that a feature

mailto:bond,trefler,klarlund@research.att.com
mailto:ivancic@gradient.cis.upenn.edu

IPTEL2001 101

described with ECLIPSE Statecharts needs very few addi-
tional implementation details.

Since ECLIPSE Statecharts are based on finite state ma-
chines they are suitable for automated analysis. The ability
to analyze ECLIPSE feature logic is desirable for a num-
ber of reasons. A consequence of the underlying architec-
ture of ECLIPSE is that the failure of any feature module
involved in a call (“feature box” in DFC) can cause the en-
tire call to fail. Moreover, since the ECLIPSE architecture
is open we expect third-parties to develop features for use
in ECLIPSE networks. For these reasons it is important to
ensure that each feature module deployed in an ECLIPSE
network satisfy certain minimal integrity constraints.

One way to ensure that these constraints are met is to
use run-time monitoring of individual features. This ap-
proach, which is still used in parts of the current ECLIPSE
network, imposes run-time overhead which we would pre-
fer to avoid. A complementary approach is to analyze fea-
ture logic prior to its deployment in the ECLIPSE network.
Using this approach, features that satisfy the constraints no
longer require run-time monitoring.

In the current ECLIPSE system, ECLIPSE Statecharts
exist as a set of Java classes (i.e. state classes, transition
classes and an interpreter class). The Java compiler is used
to perform syntax checking and type checking. However,
the compiler cannot detect domain-specific semantic er-
rors. To do this we have developed a tool to perform sim-
ple static analysis functions similar to the C language’s lint
tool, as well as to perform more complex model checking
tasks on the code to ensure that a feature interacts correctly
with its environment. The actual model checking task is
performed using the Mocha model checking tool [4], [5].

II. DFC

The DFC architecture is an instance of the “pipes and
filters” architectural design pattern. As shown in Figure 1,
a DFC network consists of instances of a small number
of component classes: Line Interface (LI) boxes which
connect a single device to a DFC network, for example,
a black phone; Trunk Interface (TI) boxes which connect
another network to a DFC network e.g. the PSTN; Feature
boxes which implement feature logic e.g. call waiting.

When a call is initiated from an LI or TI box, the router
finds the destination LI or TI and then finds the feature
boxes that are to be inserted based on user subscription
data and precedence rules. Figure 2 shows how boxes
establish connections between each other by exchanging
DFC messages between peer ports according to a protocol
defined as part of DFC. The overall graph of boxes that is
constructed over the course of a call is called a usage.

ports

FB

DFC Network

feature box

trunk interfaceline interface

PSTNFB TILI

Router

Fig. 1
A DFC NETWORK.

router

feature layer

caller callee caller callee

router layer

1. setup

2. setup

3. upack

4. setup

5. setup

6. upack

router router

Fig. 2
CONSTRUCTING A USAGE IN DFC.

III. INTER-PORT MESSAGING

In ECLIPSE, the behavior of an individual feature box
is defined using an ECLIPSE Statechart. A feature box can
communicate with its environment only via its ports which
are connected to ports on peer boxes. A box’s Statechart
defines how the box reacts to messages it receives on its
ports. The actions performed by a box in response to a
message may include sending messages out its ports. Mes-
sage exchange between peer ports is asynchronous and
each port has its own message queue for incoming mes-
sages. This form of messaging is a refinement of one form
of messaging specified by UML Statecharts.

In ECLIPSE Statecharts, as in UML Statecharts, tran-
sitions have labels of the form: event[guard]=action,
where each label component is optional. Events are mes-
sage receive operations on a port, guards are arbitrary
boolean expressions, and actions are arbitrary expressions,
which often include send operations on ports. A transi-
tion is enabled (fireable) if there is a message available
in the specified port’s queue and the guard evaluates to
true. In ECLIPSE Statecharts we use the following nota-
tional short forms (borrowed from the CSP language[6]):
port!message to send, and port?message to receive.

For the reader familiar with UML Statecharts, you
should note that, unlike UML Statecharts where each ob-
ject possesses a single queue for incoming asynchronous
messages, ECLIPSE feature boxes potentially possess
multiple queues: one for each port associated with the box.

IPTEL2001 102

IV. PORT PROTOCOLS

In order to support feature logic modularity in the con-
text of a pipes and filters architecture, DFC requires that
box ports obey well-defined protocols. These protocols
ensure that a box can insert itself into a usage as it is be-
ing constructed, and remove itself from a usage when the
usage is torn down. Once a box is inserted into a usage,
a box is able to effect changes on the signaling and media
associated with the “call” via its port connections.

There are four classes of box ports defined by DFC:
router ports, which receive messages from a router, caller
ports, which are only able to initiate connections to peer
boxes; caller ports, which are only able to receive connec-
tions from peer boxes; and dual ports, which can behave as
either a caller or callee port for the lifetime of a connection
with a peer box.

A box programmer is responsible for ensuring that these
protocols are correctly implemented for each port em-
ployed by a box. Typically a box uses a number of ports.
For example, the ECLIPSE Statechart defining the feature
logic for the call waiting feature, shown in Figure 3, em-
ploys 4 ports: a router port (labeled ’box’), two dual ports
(labeled ’dual1’ and ’dual2’ with aliases ’sub’ and ’conn’)
and a callee port (labeled ’callee’ with alias ’wait’). This
Statechart utilizes the UML Statecharts notions of nested
state machines and history pseudostate, as well as semantic
refinements to UML Statecharts involving transition prior-
ity based on message class and nesting level.

V. FEATURE LOGIC ANALYSIS

Feature logic analysis addresses the following two ques-
tions:
� Did the programmer of the feature box consider all pos-
sible input messages that the environment—the peers asso-
ciated with the feature box—can send to the feature box?
� Does the feature box output only those messages to its
environmental peers that are expected by those peers?

Performing this analysis is a two-step process. The first
step consists of translating the feature logic expressed as
ECLIPSE Statecharts code into a model suitable for use
by the Mocha model checking tool. The analysis of the
model using Mocha is performed in the second step.

Model checking ECLIPSE feature code takes place in
a test environment set up by ECLIPSE2Mocha within
the modeling language framework of Mocha, called Re-
active Modules (RM). That is, given a feature box B,
ECLIPSE2Mocha translates B into RM and combines B
with the RM versions of the standardized environmental
peer entities with which B expects to communicate. Fi-
nally, ECLIPSE2Mocha adds a distinguished bad state to

START

LINK_DUAL2
entry /
dual1!Upack;
dual2!setup1.continue()

box?Setup [src zone] /
setup1 = Setup;
sub = dual1;
conn = dual2

box?Setup [tgt zone] /
setup1 = Setup;
sub = dual2;
conn = dual1

TRANSPARENT
include /
TransparentFSM(sub, conn)

dual2?Upack /
wait = callee

END
include /
DualTeardownFSM(dual1);
DualTeardownFSM(dual2);
CalleeTeardownFSM(callee)

dual2?Upnack

sub?Teardown conn?Teardown
HPARTICIPANT_WAITING

include /
WaitingParticipantFSM(sub, conn, setup2)

box?Setup /
setup2 = Setup;
wait!Upack;
sub!CallWaiting

[@SUBSCRIBER_RECONNECTED] /
temp = conn;
conn = wait;
wait = temp

wait?Teardown
[@TRANSPARENT] /
wait.teardown()

[@PARTICIPANT_DISCONNECTED_FLASH] /
temp = conn;
conn = wait;
wait = temp

[@SUBSCRIBER_DISCONNECTED] wait?Teardown

wait?Status

[@PARTICIPANT_CONNECTED_FLASH]
temp = conn;
conn = wait;
wait = temp

box?Setup /
box!Upnack

Fig. 3
THE CALL WAITING FEATURE LOGIC

the RM model of B and its peers. The RM test environ-
ment behaves exactly like B combined with its peers ex-
cept in the case when either B sends a message to a peer
which the peer cannot accept or a peer sends a message to
B which B cannot accept. In either case the test environ-
ment transits to the bad state.

Model-checking then consists of checking whether
there is an execution of the test environment from the ini-
tial state of B to the bad state. This check can be easily
embedded in the temporal logic which Mocha uses to eval-
uate RM models.

VI. TRANSLATION

The translation of ECLIPSE Statecharts feature logic
code to a RM model consists of the series of steps shown
in Figure 4.

The feature logic code – written in a subset of Java – is
first parsed. The next step identifies the Eclipse Statecharts
instructions, such as addState or addTransition
and produces an abstract model of the code expressed as
a hierarchical state machine. The hierarchical state ma-

IPTEL2001 103

code

RM
RM model

create

ECLIPSE

Code
Statecharts

separation
action

preliminary
semantic checks

parse

create hierarchical
FSM model

create flattened
FSM model

instantiate aliases
in FSM model

Model

Fig. 4
TRANSLATION OF ECLIPSE FEATURE LOGIC TO A MOCHA

MODEL

chine is flattened, and then port aliases are instantiated.
Some preliminary checks are performed on the resulting
model and then a model is output in RM. These steps are
explained in more detail in the following sections.

A. Parsing and Creating the Hierarchical FSM Model

The ECLIPSE Statecharts language is implemented in
Java. To define an ECLIPSE Statechart a programmer sub-
classes the main FSM class and, in this class’s construc-
tor, creates instances of state and transition objects and in-
vokes methods to add them to the FSM. The parent FSM
class, the transition classes and the state classes comprise
the ECLIPSE Statecharts language and its interpreter.

Programmers can define action methods for transition
or state instances that will be executed by the FSM inter-
preter when a transition fires or when a state is entered or
exited. Similarly, programmers can define guard methods
for transitions that will be invoked by the FSM interpreter
to determine if a transition is enabled.

The parsing step parses the Java code that defines an
ECLIPSE Statechart. The parser grammar is customized to
recognize the declarations of transitions, states, and their
associated action or guard methods, as well as declarations
of ports associated with the box. The resulting parse tree
contains the elements of the Java code that are necessary
for constructing the hierarchical FSM model.

B. Flattening

Since Mocha’s RM language does not support the no-
tion of hierarchical state machines, these are flattened to
simplify translation to the RM model. Also, the semantics
of Eclipse Statecharts are easily expressed in the flattened
state machine. This is particularly true for the transition
priority rules used in Eclipse Statecharts. Another reason
for favoring a flattened state machine is that checking other
properties not checked by Mocha, like “Are all possible
status messages in this state covered?”, are much easier in
a flattened state machine.

It should be noted that the flattening phase does not in-
crease the number of states in the state machine. On the
contrary, it may actually reduce the number of states in the
state machine. However, the flattening phase normally in-
creases the number of transitions. Furthermore, the num-
ber of states will increase exponentially relative the to orig-
inal program size when state machines are hierarchically
nested.

C. Instantiation

Eclipse Statecharts permit the use of port aliases—that
is, variables that range over the ports of the feature box.
Mocha’s RM does not directly support variable aliasing so
the instantiation step explicitly instantiates occurrences of
port aliases with their possible values. Instantiation results
in adding conditions to transition guards. In general, in-
stantiation will also increase the number of transitions.

D. Preliminary Semantic Checks

In this step we check certain semantic properties that
are easily checked in the flattened state machine. Cur-
rently, we are checking whether a state that accepts a spe-
cific status message on a given port also takes care of all
other possible status messages on that port. This is a nice
by-product of flattening the state machine, because certain
properties can be checked easily in a state-by-state fashion.

E. Action Separation

The RM model is not able to directly express the case of
a feature box sending more than one message to the same
peer during one transition. If such behavior is detected, the
sending actions in the same transition are separated from
each other by introducing a so-called micro-state �. By
introducing a sequence of micro-states, each with exactly
one incoming transition and one outgoing transition, we
handle the fact of sending a sequence of messages to the
same peer. So, for example, if an action sends n messages
to the same peer, we introduce n � 1 new micro-states
�i;i=1;:::;n�1.

IPTEL2001 104

VII. CREATING THE REACTIVE MODULES MODEL

The final translation step shown in Figure 4 creates the
RM model for the Mocha model checker. In order to un-
derstand the mapping from the flattened FSM model to the
RM model, it is necessary to provide some background in-
formation on Mocha and the RM language itself.

A. The Model Checker Mocha

Model checking is emerging as a practical tool for
automated debugging of embedded software. In model
checking, a high-level description of a system is com-
pared against a logical correctness requirement to discover
inconsistencies. Since model checking is based on ex-
haustive state-space exploration, and the size of the state
space of a design grows exponentially with the size of the
description, scalability remains a challenge. The model
checker Mocha is based on the idea of exploiting modular
design structure during model checking. Instead of manip-
ulating unstructured state-transition graphs, it supports the
hierarchical modeling framework of Reactive Modules.

The language Reactive Modules is a modeling and anal-
ysis language for heterogeneous concurrent systems with
synchronous and asynchronous components. This is ac-
complished by the notion of time rounds. As a model-
ing language it supports high-level, partial system descrip-
tions, rapid prototyping, and simulation. As an analysis
language it allows the specification of requirements either
in temporal logic or as abstract modules. Finally, as a lan-
guage for concurrent systems, it allows a modular descrip-
tion of the interactions among the components of a system.

The behavior (executions) of a reactive system can be
visualized in a message sequence charts (MSC) like fash-
ion by using the simulator. To run the simulator, the
user selects a module and the submodules/variables to be
traced. For each selected variable, a vertical line shows its
evolution in time. The value of a variable is displayed only
when it changes. The same format is used to display the
counter-examples generated by the model checkers during
failed verification attempts. The simulator can be used ei-
ther in automatic or in manual mode.

Mocha allows the specification of requirements in a rich
temporal logic called alternating temporal logic (ATL). By
far the most common requirements are invariants, and thus
it is of utmost importance to implement invariant checking
efficiently. With this in mind, Mocha provides both fine-
tuned enumerative and symbolic state search routines for
invariant checking.

B. The RM Model

The flattened state machine is translated into a single
RM module. The environmental peers are instances of
predefined RM modules. The combination of these RM
modules constitutes the RM model that is used for model
checking.

The operational semantics of the state machine are ex-
plicitly translated into the RM model. The communication
between a box’s Statechart and its environmental peers is
accomplished using the following sub-round structure of
one RM time round:

1. First a peer is chosen to send at most one message and
update its internal state.
2. The feature box model will receive either no message
or exactly one message from one of its peers. If it does not
receive a message, it will not do anything. If it receives a
message, it will update its internal state, and it might also
send messages to its peers. Note that the use of micro-
states constrains a feature box model to send at most one
message to any peer.
3. The peers will receive the messages from the feature
box. If a peer receives a message from the feature box, it
updates its internal state.

Whenever a peer receives a message that it does not have
an explicit transition for, the peer model fires an implicit
transition into a special “bad state”, that indicates the fea-
ture box is incorrect. Similarly, whenever the box model
receives a message that it does not have a transition for, the
box model fires an implicit transition into a bad state.

The approach to modeling we have adopted avoids ex-
plicitly modeling the queues between the feature box and
its environment. Therefore, a message that is sent from a
peer (and potentially changes the internal state of the peer)
has to be handled immediately by the feature box model.
In reality a feature box might actually enqueue a peer mes-
sage for a while before it looks at it. So to avoid flagging an
error in the feature box because it received a message that
it was not expecting at this point (the programmer merely
decided not to bother with this peer in this particular state),
we have to ensure that the peer does not send this message
in the first place. Therefore, we have introduced enabling
flags that signal a peer whether the feature box model is
ready to accept any message the peer might want to send
at a given time.

We can avoid modeling the queues involved in the real
system by modeling them implicitly in the environment of
the feature box. The peers are allowed to skip a round
where they are supposed to send a message, which basi-
cally models the fact that the previous message has not ar-
rived at the peer yet. The possibility to skip a message can

IPTEL2001 105

Idle

Linked

?upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 5
DFC CALLEE PORT PEER PROTOCOL

also be interpreted as a delay of the message from the peer
to the feature box. After careful consideration of the envi-
ronmental models it is clear that all possible message se-
quences that the environment in the original setting might
send can be sent in the RM model.

The last step of our translation is the output of a RM
model of the feature box. The peers have predefined mod-
els that are based on the state machines shown in Figures 5,
6, 7, and 8. If a feature box sends out instances of status
message subclasses, rather than just instances of the parent
status message class, it is necessary to add transitions into
the peer models. Consider the case that a feature box sends
out the status messages subclass m1; : : : ; mn to its peers.
For each transition in the peer model that is labeled with
“?status”, we will include a transition for each message
mi;i=1;:::;n with the label “?mi”.

As mentioned before, we translate the flattened state
machine as one RM module. The RM model maintains
a variable called currentState that ranges over all
states, and keeps track of the state that the flattened state
machine is in. Each transition is translated to one update
rule in the model. An additional rule covers the case that
no message arrives from the environment in a time round.
This rule ensures that the state of the state machine does
not change. If a message arrives, but no update rule is
applicable, then we will enter a “dead state” and flag an
error. This covers one of the problems we are looking for,
because it basically means that the programmer of the fea-

Idle

Requesting

?setup !upnack

Linked

!upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 6
DFC CALLER PORT PEER PROTOCOL

Idle

Requesting

?setup

Linked

?upack

!upnack

!upack

?status !status

PortMajor

?teardown

PeerMajor

!teardown

!downack

!status

PortAndPeer

!teardown

?downack

?status

?teardown

PeerMinor

!downack

PortMinor

?downack

?downack !downack

Fig. 7
DFC DUAL PORT PEER PROTOCOL

Start !setup

Fig. 8
DFC ROUTER PORT PEER PROTOCOL

IPTEL2001 106

B
p?m [alias = p & g] / p1!m1 , p2!m2 , alias := p3

A

Fig. 9
TRANSITION FROM A TO B IN THE FLATTENED STATE

MACHINE

ture box has forgotten to take account for this particular
message.

Figure 9 shows a sample transition in the flattened state
machine. Its source state is A, and its destination is state
B. It is enabled if the guard alias = p^g is true, and if the
message m from the peer of port p arrives at the feature
box. If this transition is taken, then the actions p 1!m1 ,
p2!m2 , alias = p3, are executed.

We translate this transition into RM in the following
manner:
currentState = A & signalFromP? &

messageFromP’ = m & alias = p & g ->

signalToP1! ; messageToP1’ := m1 ;

signalToP2! ; messageToP2’ := m2 ;

alias’ := p3 ;

currentState’ := B ;

When we send a message to a peer, we update the cor-
responding value, but we also have to make sure that it
is realized that we updated the value. We therefore issue a
Mocha event by sayingsignalToP1!. To check whether
there has been a message send from P in this round, we
check the corresponding event by signalFromP?. To
receive the message that was sent in this round, we have to
ask for messageFromP’ instead of messageFromP,
which holds the value of the previous time round.

VIII. MODEL-CHECKING ECLIPSE STATECHARTS

In Figure 10, we give an example of an ECLIPSE Stat-
echarts feature box we have analyzed. This feature be-
haves like a buffer after it has been set up between a left
and right neighboring box. Upon proper initialization ac-
cording to the DFC protocol, the box is in state ’linked’,
where it reads messages from its right hand neighbor on
the calleePort and sends them to its left hand neighbor on
it callerPort and vice versa. The states ’linked’, ’transpar-
ent1’ and ’transparent2’ explain this behavior. Here, we
have assumed that the messages are atomic; in reality, the
messages contain values that are temporarily stored in the
feature box. The remaining states are necessitated by the
DFC protocol.

If Mocha does determine that the state bad is reachable
from the initial state, a debugging mechanism in Mocha is
available to reconstruct the sequence of events leading to
the bad state. In Figure 11 we show a screen shot of Mocha

boxPort?setup

callerPort!setup

calleePort!upack

transparent1

 unlink2 unlink7

calleePort!downack

calleePort!upnack

Init

callerPort?upnack

linking2

linking1

linking 3 unlink1

linked transparent2

unlink8
calleePort?status

unlink3

unlink9 unlink10unlink5unlink4

end unlink6 end unlink11

callerPort?upack

calleePort?status

callerPort!status

callerPort?status

calleePort!status

calleePort?teardown callerPort?teardown

callerPort?status

callerPort?downack
callerPort?teardown

calleePort?downack calleePort?teardown

calleePort!downack callerPort!downack
callerPort!downack

callerPort?downack calleePort?downack

callerPort!teardown calleePort!teardown

Fig. 10
TRANSPARENT FEATURE BOX

displaying such a trace. The error was generated by alter-
ing the program in Figure 10 so that the feature box sends
two consecutive teardown messages: we changed the ’un-
link5’ to ’unlink6’ transition so that a teardown message is
placed on the callerPort instead of a downack. The trace,
which is shown only partially, reflects that error by taking a
path in the protocol that produces two teardown messages.

During the programming in Java of this trivial feature
box, we introduced several little errors as typically hap-
pens, mostly due to misspellings. All but one were caught
by the parser of the ECLIPSE2Mocha tool. (Some would
also have been caught by the Java compiler.) The one that
was not caught was discovered through model checking.
The model checker approved of the Java code, but even
a positive answer must be taken with a grain of salt. For

IPTEL2001 107

Fig. 11
MOCHA ERROR TRACE

example, in our setting the model checker does not check
for liveness properties like “does the feature box always
eventually acknowledge a teardown request?”. Thus, it is a
reasonable sanity check to willfully introduce errors in the
feature box program that is purported to be correct. When
we did this, we discovered that the program sometimes,
unexpectedly, still was passed by the model checker. As
a result, we discovered a misspelling of a method name
that issues a message to a port. This Java error would not
have been caught by a compiler since the erroneous name
appeared in the initializer for an object of an anonymous,
inner class.

When we originally programmed the call waiting box in
Figure 3, we struggled with three insidious programming
errors, all of which we later presented to our tool. They
were all correctly identified through error traces.

A. Correctness of analysis

To give a complete account of what the correctness
of our analysis is would be a huge task. For example,
we would need a formal description of the semantics of
ECLIPSE Statecharts, the semantics of the translation, and
the semantics of the Mocha language. Also, we would
need to carefully explain the abstractions that are inherent
to our analysis. Instead, we will give an informal statement
that reflects our belief that we have correctly implemented
the ECLIPSE Statecharts semantics through the translation

to Mocha. Thus, we will have to relate errors found dur-
ing runtime to errors discovered by our tool. Our concept
of error is that of the Section V: an error occurs if either
the environment or the feature box is unable to process a
message. We say that there is an error in the ECLIPSE
Statecharts feature if there exists an environment that fol-
lows the peer protocols and for which the composite sys-
tem may enter a situation where a port is unable to pro-
cess a message. Note that such a situation is characterized
by a trace (history) of communication events. In general,
traces involve buffering of messages—something that our
Mocha model does not accommodate. Therefore, we say
that a trace is synchronous if the event following a send
message is the accept of the message. Moreover, we as-
sume that the only communication events that involve the
feature box are those that are recognized as such by the
ECLIPSE Statecharts parser (thus, communication events
invoked through auxiliary method definitions are not al-
lowed). Also, we assume that all Boolean guards on mes-
sage transitions are true. Then, we believe the following to
be true.
� (Soundness) Any error found in the ECLIPSE test en-
vironment by the model checking procedure is an error in
the ECLIPSE Statecharts feature.
� (Completeness under synchronization assumption) As-
sume that an ECLIPSE Statecharts feature exhibits an er-
ror in a synchronous trace. Then, the ECLIPSE Statecharts
will not pass the model checking procedure.
In a more advanced tool, it would sometimes be relatively
straightforward to analyze Boolean guards if they involve
local variables. The issue of analyzing queued system is
generally undecidable, since queues tend to resemble tapes
of Turing machines.

IX. RELATED WORK

Research is currently very active and diverse in the area
of model checking Statecharts. Space does not permit us
to provide a comprehensive overview of this activity. In-
stead, we will address the current work most closely re-
lated to our own. Similar to our own work, [7], [8], [9],
[10] have developed approaches to model checking proper-
ties of systems defined in various Statechart dialects. Only
one of these approaches ([9]) addresses queued, asyn-
chronous messaging between Statechart objects—similar
to the way that an ECLIPSE feature box interacts with
its environmental peers. However, in their approach they
assume bounded queues between the environment and an
object. Instead of arbitrarily bounding queue length, our
approach abstracts away the queues by exploiting proper-
ties of the environmental peer protocols and the semantics
of the Mocha RM modeling language. Although the ap-

IPTEL2001 108

proach we use is not general enough to be applied to all
possible environmental behavior, it is suitable for the envi-
ronmental behavior defined by the DFC architecture.

In practice, the customized parser that we built for Java
programs turned out to be very useful by itself for writing
ECLIPSE Statecharts. Our experience validates the use
of statically-checked constraints that formalizes software
architectures. Several general tools for expressing such ar-
chitectural constraints on code have been proposed; see
[11] for references and the description of CoffeeStrainer, a
tool for checking Java programs.

X. CONCLUSIONS AND FUTURE WORK

We have built a tool, ECLIPSE2Mocha, for analyz-
ing the communication behavior of an ECLIPSE feature
and its immediate environment. ECLIPSE2Mocha is ca-
pable of detecting subtle semantic errors of ECLIPSE
feature code and using the Mocha reporting features
ECLIPSE2Mocha is well suited as a debugging aide for
ECLIPSE features. Our translation of ECLIPSE feature
code to RM code relies on a crucial abstraction – namely,
the modeling of asynchronous communication via un-
bounded queues by synchronous communication. How-
ever, because we restrict the types of properties analyzed,
errors detected by ECLIPSE2Mocha can be translated into
errors of the ECLIPSE feature code.

For the future we see several interesting directions to
take this work. Firstly, we see a need for an intermediate
language between the Java code of ECLIPSE Statecharts
and RM. Such an intermediate language would make the
use of other analysis tools far easier and remove the need
for a direct mapping between ECLIPSE Statecharts and
RM. Secondly, we would like to explore the use of model
checkers of hierarchical models [12] to avoid the flattening
phase currently used by ECLIPSE2Mocha. Thirdly, we are
interested in incorporating ECLIPSE2Mocha and the use
of Mocha directly within a domain specific compiler for
ECLIPSE Statecharts.

Finally, we would like to enhance the class of properties
checked. This can be done by enlarging the type of envi-
ronmental entities used in the analysis and by more faith-
fully modeling the unbounded queues and asynchronous
communication of ECLIPSE. These enhancements would
allow us to check significantly more feature interaction
properties.

ACKNOWLEDGMENTS

The authors would like to thank the other members
of the ECLIPSE project at AT&T Labs – Research for
their feedback during the development of ECLIPSE State-
charts and the analysis tool: Eric Cheung, Andrew Forrest,

Michael Jackson, Hal Purdy, Chris Ramming, Xiaotao Wu
(Columbia University) and Pamela Zave.

REFERENCES

[1] Michael Jackson and Pamela Zave, “Distributed feature com-
position: a virtual architecture for telecommunications services,”
IEEE Transactions on Software Engineering, vol. 24, no. 10, pp.
831–847, Oct. 1998. 100

[2] David Harel and Eran Gery, “Executable object modelling with
Statecharts,” IEEE Computer, July 1997. 100

[3] Object Management Group, OMG Unified Mod-
eling Language Specification, version 1.3, Ob-
ject Management Group, June 1999, Available at
ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf .
100

[4] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer,
Sriram K. Rajamani, and Serdar Tasiran, “Mocha: Modularity
in model checking,” in Proceedings of the Tenth International
Conference on Computer-aided Verification (CAV). 1998, num-
ber 1427 in Lecture Notes in Computer Science, pp. 521–525,
Springer-Verlag. 101

[5] L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Ma-
jumdar, F. Mang, C. Meyer-Kirsch, and B.Y. Wang, Mocha: Ex-
ploiting Modularity in Model Checking, August 2000, Available
at http://www-cad.eecs.berkeley.edu/˜mocha.
101

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985. 101

[7] S. Gnesi, D. Latella, and M. Massink, “Model checking UML
Statechart diagrams using JACK,” in Proceedings of the 4th IEEE
International Symposium on High-Assurance Systems Engineer-
ing, 1999, pp. 46–55. 107

[8] E. Mikk, Y. Lakhnech, M. Siegel, and G.J. Holzmann, “Imple-
menting Statecharts in PROMELA/SPIN,” in Proceedings of the
2nd IEEE Workshop on Industrial Strength Formal Specification
Techniques, 1998, pp. 90–101. 107

[9] J. Lilius and I.P. Paltor, “vUML: a tool for verifying UML mod-
els,” in Proceedings of the 14th IEEE International Conference
on Automated Software Engineering, 1999, pp. 255–258. 107

[10] Chonlawit Banphawatthanarak and Bruce H. Krogh, “Ver-
ification of stateflow diagrams using SMV: sf2smv 2.0,”
Tech. Rep., Dept. of Electrical and Computer Engineer-
ing, Carnegie Mellon University, June 2000, Available at
http://www.ece.cmu.edu/˜krogh. 107

[11] B. Bokowski, “Statically-checked constraints on the definition
and use of types in Java,” in Proceedings of ESEC/FSE’99, 1999,
vol. 1687 of LNCS, pp. 355–375. 107

[12] R. Alur and M. Yannakakis, “Model checking of hierarchical
state machines,” in Proceedings of the Sixth ACM Symposium
on the Foundations of Software Engineering, 1998, pp. 175–188,
Available at http://www.cis.upenn.edu/˜alur . 107

ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf
http://www-cad.eecs.berkeley.edu/~mocha
http://www.ece.cmu.edu/~krogh
http://www.cis.upenn.edu/~alur

	Introduction
	DFC
	Inter-Port Messaging
	Port Protocols
	Feature Logic Analysis
	Translation
	Parsing and Creating the Hierarchical FSM Model
	Flattening
	Instantiation
	Preliminary Semantic Checks
	Action Separation

	Creating the Reactive Modules Model
	The Model Checker Mocha
	The RM Model

	Model-Checking ECLIPSE Statecharts
	Related Work
	Conclusions and Future Work

