IPTEL2001

100

ECLIPSE Feature Logic Analysis

Gregory W. Bond, Franjo Ivanci€, Nils Klarlund, Richard Trefler
1 bond, tretler, Klarlund + (@research.att.corr
varnci c@araalent.cis.upenn.eac

Abstract—ECLIPSE is a virtual telecommunications net-
work based on IP. It is the result of an ongoing research
project at AT&T Labs — Research that is investigating next-
generation telecom service architectures. The ECLIPSE
Statecharts language was developed to simplify feature (ser-
vice) development, for example call waiting, by supporting
a smooth transition from design to implementation and by
supporting automated semantic analysis. The modular na-
ture of ECLIPSE features necessitates that they utilize well-
defined protocols for communicating with one another. If an
individual feature fails to obey the protocol then it is likely
that subscribers to the feature will be unable to complete
calls. This paper describes a tool that uses the Mocha model
checking tool to analyze ECLIPSE feature modules to en-
sure that they satisfy the specified protocols.

Keywords— DFC, Distributed Feature Composition, tele-
com services, voice over IP, VoIP, UML Statecharts, Mocha,
model checking, Java

I. INTRODUCTION

CLIPSEis a virtual telecommunications network
based on IP. It is the result of an ongoing research
project at AT& T Labs— Research that i sinvestigating next-
generation telecom service architectures. The ECLIPSE
network is intended to support multimedia telecommuni-
cation services involving voice, video, and text in seam-
less composition. The ECLIPSE network is designed to
be device-independent to accommodate today’s range of
soft and hard devices such as cable phones, Microsoft
Netmeeting™, AOL Instant Messenger ™, aswell as mul-
tiple external networks such as the public switched tele-
phone network (PSTN). ECLIPSE provides a framework
for rapid development and deployment of telecom ser-
vices. It aso provides a framework for managing “fea
ture interaction,” a problem that has hampered customiza-
tion and rapid innovation of services in traditiona tele-
phony. ECLIPSE isan instance of Jackson and Zave'sDis-
tributed Feature Composition (DFC) virtua architecture
[. DFC provides a framework for exposing and man-
aging feature (service) interactions in multi-party, multi-
feature (service) and multi-media “calls’ in telecom net-
works. ECLIPSE implements DFC in an IP setting.
G.W. Bond, N. Klarlund and R. Trefler are located at AT& T Labs—

Research, Florham Park, NJ, USA; F. IvanCic is located at University
of Pennsylvania, Philadelphia, PA, USA

The ECLIPSE Statecharts language, hereafter referred
to as “ECLIPSE Statecharts’, was developed to meet the
needs of ECLIPSE feature developers. Before ECLIPSE
Statecharts was developed, ECLIPSE featureswere imple-
mented using a general programming language (Java). It
became clear early on that using a general programming
language wasinadequate for this purpose since it was easy
to introduce faults into the feature logic, even for the sim-
plest of features. For example, developers would forget
to account for possible feature states, they would neglect
to account for messages that might be received from the
feature's environment, and they would respond incorrectly
to messages received from the environment. For a more
complicated feature like call waiting, which involves mul-
tiple parties, the problems were worse since the number of
states and possible interleavings of messages exchanged
with the environment were much greater. ECLIPSE State-
charts was designed to address these problems.

ECLIPSE Statecharts is a customized version of the
Unified Modeling Language (UML) Statecharts behav-
ioral description language [], [E]. The UML Statecharts
language, hereafter referred to as“UML Statecharts’, isa
graphical language for describing hierarchically structured
state machines. Since it is a graphical language based on
state machinesitiswell suited for describing the highlevel
behavior of system structures. The language supports hi-
erarchically structured state machines so it is possible to
describe complex behavior with smplediagrams. Thelan-
guage also supports a number of concepts that are useful
for describing timed, reactive systems, for example con-
current state machines, timed transitions, and a number of
inter-object and inter-state machine communication mech-
anisms. In addition to being a powerful behaviora de-
scription language, UML Statecharts is part of the Object
Modeling Group's UML standard for object-oriented sys-
tem modeling. For this reason, a growing number of tools
are available or in development to support the language.

Asadesign language UML Statecharts might have suf-
ficed for describing the high level behavior of ECLIPSE
features. However, by incorporating a number of
ECLIPSE concepts into the language, it is possibleto for-
mally translate an ECLIPSE feature design to an imple-
mentation. Indeed, experience has shown that a feature

mailto:bond,trefler,klarlund@research.att.com
mailto:ivancic@gradient.cis.upenn.edu

IPTEL2001

described with ECLIPSE Statecharts needs very few addi-
tional implementation details.

Since ECLIPSE Statecharts are based on finite state ma-
chinesthey are suitablefor automated analysis. The ability
to analyze ECLIPSE feature logic is desirable for a num-
ber of reasons. A consequence of the underlying architec-
ture of ECLIPSE is that the failure of any feature module
involvedin acall (“feature box” in DFC) can cause the en-
tire call to fail. Moreover, since the ECLIPSE architecture
is open we expect third-partiesto devel op features for use
in ECLIPSE networks. For these reasonsit isimportant to
ensure that each feature module deployed in an ECLIPSE
network satisfy certain minimal integrity constraints.

One way to ensure that these constraints are met is to
use run-time monitoring of individual features. This ap-
proach, whichisstill used in parts of the current ECLIPSE
network, imposes run-time overhead which we would pre-
fer to avoid. A complementary approach isto analyze fea-
turelogic prior to itsdeployment in the ECL I PSE network.
Using thisapproach, featuresthat satisfy the constraintsno
longer require run-time monitoring.

In the current ECLIPSE system, ECLIPSE Statecharts
exist as a set of Java classes (i.e. state classes, transition
classesand an interpreter class). The Javacompiler isused
to perform syntax checking and type checking. However,
the compiler cannot detect domain-specific semantic er-
rors. To do this we have developed atool to perform sim-
ple static analysisfunctionssimilar to the C language’slint
tool, as well asto perform more complex model checking
taskson the code to ensure that a feature interacts correctly
with its environment. The actual model checking task is
performed using the Mocha model checking tool [], [F].

II. DFC

The DFC architecture is an instance of the “pipes and
filters’ architectural design pattern. As shownin Figure il
a DFC network consists of instances of a small number
of component classes: Line Interface (LI) boxes which
connect a single device to a DFC network, for example,
a black phone; Trunk Interface (T1) boxes which connect
another network to a DFC network e.g. the PSTN; Feature
boxes which implement feature logic e.g. call waiting.

When acall isinitiated from an L1 or Tl box, the router
finds the destination L1 or Tl and then finds the feature
boxes that are to be inserted based on user subscription
data and precedence rules. Figure B shows how boxes
establish connections between each other by exchanging
DFC messages between peer ports according to a protocol
defined as part of DFC. The overall graph of boxesthat is
constructed over the course of acall is called a usage.

101

DFC Network
feature box

line |nterface

ports

ET] PSTN

trunk |merface

Fig. 1
A DFC NETWORK.

caller callee caller callee
3. upack 6. upack
L SEIUP router 4. setup router
5 setup

router

2. setup
feature layer

router layer
Fig. 2
CONSTRUCTING A USAGE IN DFC.

I11. INTER-PORT MESSAGING

In ECLIPSE, the behavior of an individual feature box
isdefined using an ECLIPSE Statechart. A feature box can
communicate with its environment only viaits portswhich
are connected to ports on peer boxes. A box’s Statechart
defines how the box reacts to messages it receives on its
ports. The actions performed by a box in response to a
message may include sending messages out itsports. Mes-
sage exchange between peer ports is asynchronous and
each port has its own message queue for incoming mes-
sages. Thisform of messaging isarefinement of oneform
of messaging specified by UML Statecharts.

In ECLIPSE Statecharts, as in UML Statecharts, tran-
sitions have labels of the form: event[guard]/action,
where each label component is optional. Events are mes-
sage receive operations on a port, guards are arbitrary
boolean expressions, and actions are arbitrary expressions,
which often include send operations on ports. A transi-
tion is enabled (fireable) if there is a message available
in the specified port’s queue and the guard evaluates to
true. In ECLIPSE Statecharts we use the following nota-
tional short forms (borrowed from the CSP language[4]):
port!message to send, and port?message to receive.

For the reader familiar with UML Statecharts, you
should note that, unlike UML Statecharts where each ob-
ject possesses a single queue for incoming asynchronous
messages, ECLIPSE feature boxes potentially possess
multiple queues: onefor each port associated with the box.

IPTEL2001

IV. PORT PrROTOCOLS

In order to support feature logic modularity in the con-
text of a pipes and filters architecture, DFC requires that
box ports obey well-defined protocols. These protocols
ensure that a box can insert itself into a usage as it is be-
ing constructed, and remove itself from a usage when the
usage is torn down. Once a box is inserted into a usage,
abox is able to effect changes on the signaling and media
associated with the “call” viaits port connections.

There are four classes of box ports defined by DFC:
router ports, which receive messages from a router, caller
ports, which are only able to initiate connections to peer
boxes; caller ports, which are only able to receive connec-
tionsfrom peer boxes; and dual ports, which can behave as
either acaller or calleeport for thelifetime of aconnection
with a peer box.

A box programmer isresponsiblefor ensuring that these
protocols are correctly implemented for each port em-

102

ployed by a box. Typically a box uses a number of ports. /... |~

For example, the ECLIPSE Statechart defining the feature
logic for the call waiting feature, shown in Figure B, em-
ploys4 ports: arouter port (labeled 'box’), two dual ports
(labeled 'duall’ and’'dual2’ with aliases’sub’ and *conn’)
and a callee port (labeled "callee’ with alias’wait’). This
Statechart utilizes the UML Statecharts notions of nested
state machines and history pseudostate, aswell as semantic
refinements to UML Statechartsinvolving transition prior-
ity based on message class and nesting level.

V. FEATURE LOGIC ANALYSIS

Featurelogic analysisaddresses the following two ques-
tions:
« Did the programmer of the feature box consider all pos-
sibleinput messagesthat the environment—the peers asso-
ciated with the feature box—can send to the feature box?
« Does the feature box output only those messages to its
environmental peers that are expected by those peers?

Performing thisanalysisis a two-step process. Thefirst
step consists of trandating the feature logic expressed as
ECLIPSE Statecharts code into a model suitable for use
by the Mocha model checking tool. The analysis of the
model using Mochais performed in the second step.

Model checking ECLIPSE feature code takes place in
a test environment set up by ECLIPSE2Mocha within
the modeling language framework of Mocha, called Re-
active Modules (RM). That is, given a feature box B,
ECLIPSE2Mocha trandates B into RM and combines B
with the RM versions of the standardized environmental
peer entities with which B expects to communicate. Fi-
nally, ECLIPSE2M ocha adds a distinguished bad state to

Fig. 3
THE CALL WAITING FEATURE LOGIC

the RM model of B and its peers. The RM test environ-
ment behaves exactly like B combined with its peers ex-
cept in the case when either B sends a message to a peer
which the peer cannot accept or a peer sends a message to
B which B cannot accept. In either case the test environ-
ment transitsto the bad state.

Model-checking then consists of checking whether
there is an execution of the test environment from the ini-
tial state of B to the bad state. This check can be easily
embedded in the temporal 1ogic which Mocha usesto eval-
uate RM models.

VI. TRANSLATION

The trandation of ECLIPSE Statecharts feature logic
code to a RM model consists of the series of steps shown
in Figure@

The feature logic code — written in a subset of Java—is
first parsed. The next step identifiesthe Eclipse Statecharts
instructions, such as addState or addTransition
and produces an abstract model of the code expressed as
a hierarchical state machine. The hierarchical state ma-

IPTEL2001

ECLIPSE
Statecharts /7
Code
parse
create hierarchical
FSM model /_7

create flattened
FSM model

:

instantiate aliases
in FSM model

preliminary
semantic checks

action
separation

-

create
RM model r/_\,
RM
Model
Fig. 4
TRANSLATION OF ECLIPSE FEATURE LOGIC TO A MOCHA
MODEL

chine is flattened, and then port aliases are instantiated.
Some preliminary checks are performed on the resulting
model and then a model is output in RM. These steps are
explained in more detail in the following sections.

A. Parsing and Creating the Hierarchical FSM Model

The ECLIPSE Statecharts language is implemented in
Java. To define an ECLIPSE Statechart a programmer sub-
classes the main FSM class and, in this class's construc-
tor, creates instances of state and transition objectsand in-
vokes methods to add them to the FSM. The parent FSM
class, the transition classes and the state classes comprise
the ECLIPSE Statechartslanguage and itsinterpreter.

Programmers can define action methods for transition
or state instances that will be executed by the FSM inter-
preter when a transition fires or when a state is entered or
exited. Similarly, programmers can define guard methods
for transitionsthat will be invoked by the FSM interpreter
to determine if atransitionis enabled.

The parsing step parses the Java code that defines an
ECLIPSE Statechart. The parser grammar iscustomizedto
recognize the declarations of transitions, states, and their
associated action or guard methods, aswell as declarations
of ports associated with the box. The resulting parse tree
contains the elements of the Java code that are necessary
for constructing the hierarchical FSM model.

103

B. Flattening

Since Mocha's RM language does not support the no-
tion of hierarchical state machines, these are flattened to
simplify translation to the RM model. Also, the semantics
of Eclipse Statecharts are easily expressed in the flattened
state machine. This is particularly true for the transition
priority rules used in Eclipse Statecharts. Another reason
for favoring aflattened state machineisthat checking other
properties not checked by Mocha, like “Are all possible
status messages in this state covered?’, are much easier in
aflattened state machine.

It should be noted that the flattening phase does not in-
crease the number of states in the state machine. On the
contrary, it may actually reduce the number of statesin the
state machine. However, the flattening phase normally in-
creases the number of transitions. Furthermore, the num-
ber of stateswill increase exponentially relative theto orig-
inal program size when state machines are hierarchically
nested.

C. Instantiation

Eclipse Statecharts permit the use of port aliases—that
is, variables that range over the ports of the feature box.
Mocha s RM does not directly support variable aliasing so
the instantiation step explicitly instantiates occurrences of
port aliaseswith their possible values. Instantiation results
in adding conditions to transition guards. In general, in-
stantiation will aso increase the number of transitions.

D. Preliminary Semantic Checks

In this step we check certain semantic properties that
are easily checked in the flattened state machine. Cur-
rently, we are checking whether a state that accepts a spe-
cific status message on a given port also takes care of all
other possible status messages on that port. Thisisanice
by-product of flattening the state machine, because certain
properties can be checked easily in astate-by-state fashion.

E. Action Separation

The RM model isnot ableto directly express the case of
a feature box sending more than one message to the same
peer during onetransition. If such behavior is detected, the
sending actions in the same transition are separated from
each other by introducing a so-called micro-state 1. By
introducing a sequence of micro-states, each with exactly
one incoming transition and one outgoing transition, we
handle the fact of sending a sequence of messages to the
same peer. So, for example, if an action sends » messages
to the same peer, we introduce » — 1 new micro-states

Hii=1,...n—1-

IPTEL2001
VII. CREATING THE REACTIVE MODULES MODEL

Thefinal translation step shown in Figure Bl creates the
RM model for the Mocha model checker. In order to un-
derstand the mapping from the flattened FSM model to the
RM model, it isnecessary to provide some background in-
formation on Maocha and the RM language itself.

A. The Mode Checker Mocha

Model checking is emerging as a practical tool for
automated debugging of embedded software. In model
checking, a high-level description of a system is com-
pared against alogical correctness requirement to discover
inconsistencies. Since model checking is based on ex-
haustive state-space exploration, and the size of the state
space of a design grows exponentially with the size of the
description, scalability remains a challenge. The model
checker Mocha is based on the idea of exploiting modular
design structure during model checking. Instead of manip-
ulating unstructured state-transition graphs, it supportsthe
hierarchical modeling framework of Reactive Modules.

The language Reactive Modulesis amodeling and anal-
ysis language for heterogeneous concurrent systems with
synchronous and asynchronous components. This is ac-
complished by the notion of time rounds. As a model-
ing language it supports high-level, partial system descrip-
tions, rapid prototyping, and simulation. As an analysis
language it alows the specification of reguirements either
in temporal logic or as abstract modules. Finally, as alan-
guage for concurrent systems, it allowsamodular descrip-
tion of theinteractionsamong the components of a system.

The behavior (executions) of a reactive system can be
visualized in a message sequence charts (MSC) like fash-
ion by using the simulator. To run the simulator, the
user selects a module and the submodules/variablesto be
traced. For each selected variable, avertical line showsits
evolutionintime. Thevalue of avariableisdisplayed only
when it changes. The same format is used to display the
counter-examples generated by the model checkers during
failed verification attempts. The simulator can be used ei-
ther in automatic or in manual mode.

Mocha allowsthe specification of requirementsin arich
temporal logic called alternating temporal logic (ATL). By
far the most common requirementsare invariants, and thus
it isof utmost importance to implement invariant checking
efficiently. With thisin mind, Mocha provides both fine-
tuned enumerative and symbolic state search routines for
invariant checking.

104

B. The RM Model

The flattened state machine is trandated into a single
RM module. The environmental peers are instances of
predefined RM modules. The combination of these RM
modules constitutes the RM model that is used for model
checking.

The operational semantics of the state machine are ex-
plicitly translated into the RM model. The communication
between a box’s Statechart and its environmental peersis
accomplished using the following sub-round structure of
one RM time round:

1. First a peer is chosen to send at most one message and
update itsinterna state.

2. The feature box model will receive either no message
or exactly one message from one of its peers. If it doesnot
receive a message, it will not do anything. If it receives a
message, it will update its internal state, and it might also
send messages to its peers. Note that the use of micro-
states constrains a feature box model to send at most one
message to any peer.

3. The peers will receive the messages from the feature
box. If a peer receives a message from the feature box, it
updatesitsinternal state.

Whenever apeer receives amessagethat it doesnot have
an explicit transition for, the peer model fires an implicit
transition into a special “bad state”, that indicates the fea-
ture box isincorrect. Similarly, whenever the box model
receives amessagethat it does not have atransitionfor, the
box model fires an implicit transitioninto a bad state.

The approach to modeling we have adopted avoids ex-
plicitly modeling the queues between the feature box and
its environment. Therefore, a message that is sent from a
peer (and potentially changesthe internal state of the peer)
has to be handled immediately by the feature box model.
Inreality afeature box might actually enqueue a peer mes-
sagefor awhilebeforeit looksat it. Soto avoid flagging an
error in the feature box because it received a message that
it was not expecting at this point (the programmer merely
decided not to bother with thispeer in thisparticular state),
we have to ensure that the peer does not send this message
in the first place. Therefore, we have introduced enabling
flags that signal a peer whether the feature box model is
ready to accept any message the peer might want to send
at agiventime.

We can avoid modeling the queues involved in the real
system by modeling them implicitly in the environment of
the feature box. The peers are alowed to skip a round
where they are supposed to send a message, which basi-
cally modelsthe fact that the previous message has not ar-
rived at the peer yet. The possibility to skip a message can

IPTEL2001

Idownack

Fig. 5
DFC CALLEE PoRrT PEER PrROTOCOL

also beinterpreted as a delay of the message from the peer
to the feature box. After careful consideration of the envi-
ronmental modelsit is clear that all possible message se-
quences that the environment in the original setting might
send can be sent in the RM model.

The last step of our trandation is the output of a RM
model of the feature box. The peers have predefined mod-
elsthat are based on the state machines shownin Figures B
B B andB If afeature box sends out instances of status
message subclasses, rather than just instances of the parent
status message class, it is necessary to add transitionsinto
the peer models. Consider the case that afeature box sends
out the status messages subclass m 1, . . ., m, t0 its peers.
For each transition in the peer model that is labeled with
“?status”, wewill includeatransitionfor each message
mii=1,..» Withthelabel “2m;”.

As mentioned before, we trandate the flattened state
machine as one RM module. The RM model maintains
a variable called currentState that ranges over al
states, and keeps track of the state that the flattened state
machine isin. Each transitionis transated to one update
rule in the model. An additional rule covers the case that
no message arrives from the environment in a time round.
This rule ensures that the state of the state machine does
not change. If a message arrives, but no update rule is
applicable, then we will enter a “dead state” and flag an
error. This covers one of the problems we are looking for,
because it basically means that the programmer of the fea-

!upnack

tupack

!downack

Fig. 6

!downack

Fig. 7
DFC DuAL PORT PEER PROTOCOL

3 -

Fig. 8
DFC ROUTER PORT PEER PROTOCOL

105

IPTEL2001

@ p?m[adias=p& g]/pllml, p2!m2, dias:= p@

Fig.9
TRANSITION FROM A TO B IN THE FLATTENED STATE
MACHINE

ture box has forgotten to take account for this particular
message.

Figureshows a sample transition in the flattened state
machine. Its source state is A, and its destination is state
B. Itisenabled if theguard alias= p A g istrue, and if the
message m from the peer of port p arrives at the feature
box. If this transition is taken, then the actions pq!m; ,
palmg , alias = ps, are executed.

We trandate this transition into RM in the following
manner:

currentState = A & signalFromP? &

messageFromP’ = m & alias = p & g ->
signalToP; ! ; messageToP;’ := m ;
signalToPy ! ; messageToPy’ := m2 ;
alias’ := p3 ;

currentState’ := B ;

When we send a message to a peer, we update the cor-
responding value, but we also have to make sure that it
isrealized that we updated the value. We therefore issue a
Mochaevent by saying signalToP; !. Tocheck whether
there has been a message send from P in this round, we
check the corresponding event by signalFromP?. To
receive the message that was sent in thisround, we have to
ask for messageFromP’ instead of messageFromP,
which holdsthe value of the previoustime round.

VIIl. MODEL-CHECKING ECLIPSE STATECHARTS

In Figurell, we give an example of an ECLIPSE Stat-
echarts feature box we have analyzed. This feature be-
haves like a buffer after it has been set up between a left
and right neighboring box. Upon proper initialization ac-
cording to the DFC protocol, the box is in state 'linked’,
where it reads messages from its right hand neighbor on
the calleePort and sends them to its left hand neighbor on
it callerPort and vice versa. The states’linked’, *transpar-
entl’ and 'transparent2’ explain this behavior. Here, we
have assumed that the messages are atomic; in redlity, the
messages contain values that are temporarily stored in the
feature box. The remaining states are necessitated by the
DFC protocol.

If Mocha does determine that the state bad is reachable
from theinitial state, a debugging mechanismin Mochais
available to reconstruct the sequence of events leading to
the bad state. In Figurellwe show ascreen shot of Mocha

calleePort! downack callerPort! downack
callerPort! downack

106

boxPort?setup

callerPort!setup

Wrtmpnack

calleePort! upnack

()

callerPort?upack

calleePort! upack

calleePort?status callerPort?status
transpaentl) £ linked) (transparemz
callerPort! status calleePort! status

calleePortteardown

callerPort?teardown

callerPort!teardown calleePort!teardown

callerPort?status ‘@ m
callerPort?downack calleePort?downack calleePort?teardown
callerPort?teardown

calleePort?status

calleePort! downack

[
callerPort?downack calleePort?downack

Fig. 10
TRANSPARENT FEATURE BOX

displaying such atrace. The error was generated by alter-
ing the program in Figure llll so that the feature box sends
two consecutive teardown messages: we changed the *un-
[ink5' to’unlinké’ transition so that ateardown messageis
placed on the callerPort instead of a downack. The trace,
whichisshown only partially, reflectsthat error by takinga
path in the protocol that produces two teardown messages.

During the programming in Java of this trivial feature
box, we introduced several little errors as typically hap-
pens, mostly due to misspellings. All but one were caught
by the parser of the ECLIPSE2Mochatool. (Some would
also have been caught by the Java compiler.) The one that
was not caught was discovered through model checking.
The model checker approved of the Java code, but even
a positive answer must be taken with a grain of salt. For

IPTEL2001

File Edit Simulate Check Optians

Project: franjo.rm 2222 N Simulatian Result 727

& Ctypes

& modules

@ [Jjudaments
2K

i

| TeardownMessage

| TearduwnMessagel | [}

A E

[franjo.rm [[Check Result: OK | Simulation Result

‘Invar\ant disproved

Fig. 11
MOCHA ERROR TRACE

example, in our setting the model checker does not check
for liveness properties like “does the feature box aways
eventually acknowledge ateardown request?’. Thus, itisa
reasonable sanity check to willfully introduce errorsin the
feature box program that is purported to be correct. When
we did this, we discovered that the program sometimes,
unexpectedly, still was passed by the model checker. As
a result, we discovered a misspelling of a method name
that issues a message to a port. This Java error would not
have been caught by a compiler since the erroneous name
appeared in the initializer for an object of an anonymous,
inner class.

When we originally programmed the call waiting box in
Figure B, we struggled with three insidious programming
errors, all of which we later presented to our tool. They
were all correctly identified through error traces.

A. Correctnessof analysis

To give a complete account of what the correctness
of our analysis is would be a huge task. For example,
we would need a formal description of the semantics of
ECLIPSE Statecharts, the semantics of the tranglation, and
the semantics of the Mocha language. Also, we would
need to carefully explain the abstractions that are inherent
toour analysis. Instead, wewill give aninformal statement
that reflects our belief that we have correctly implemented
the ECLIPSE Statecharts semanticsthroughthetranslation

107

to Mocha. Thus, we will have to relate errors found dur-
ing runtime to errors discovered by our tool. Our concept
of error isthat of the Section V: an error occurs if either
the environment or the feature box is unable to process a
message. We say that there is an error in the ECLIPSE
Statecharts feature if there exists an environment that fol-
lows the peer protocols and for which the composite sys-
tem may enter a situation where a port is unable to pro-
cess a message. Notethat such asituation is characterized
by a trace (history) of communication events. In general,
traces involve buffering of messages—something that our
Mocha model does not accommodate. Therefore, we say
that a trace is synchronous if the event following a send
message is the accept of the message. Moreover, we as-
sume that the only communication events that involve the
feature box are those that are recognized as such by the
ECLIPSE Statecharts parser (thus, communication events
invoked through auxiliary method definitions are not al-
lowed). Also, we assume that all Boolean guards on mes-
sagetransitionsare true. Then, we believe thefollowing to
be true.

« (Soundness) Any error found in the ECLIPSE test en-
vironment by the model checking procedureisan error in
the ECLIPSE Statechartsfeature.

o (Completeness under synchronization assumption) As-
sume that an ECLIPSE Statecharts feature exhibits an er-
ror in asynchronoustrace. Then, the ECLIPSE Statecharts
will not pass the model checking procedure.

In amore advanced tool, it would sometimes be relatively
straightforward to analyze Boolean guards if they involve
local variables. The issue of analyzing queued system is
generally undecidable, since queuestend to resemble tapes
of Turing machines.

IX. RELATED WORK

Research is currently very active and diversein the area
of model checking Statecharts. Space does not permit us
to provide a comprehensive overview of this activity. In-
stead, we will address the current work most closely re-
lated to our own. Similar to our own work, [[4], [&], [E],
[[it]] have devel oped approachesto model checking proper-
ties of systemsdefined in various Statechart dialects. Only
one of these approaches ([[]) addresses queued, asyn-
chronous messaging between Statechart objects—similar
to the way that an ECLIPSE feature box interacts with
its environmental peers. However, in their approach they
assume bounded queues between the environment and an
object. Instead of arbitrarily bounding queue length, our
approach abstracts away the queues by exploiting proper-
ties of the environmental peer protocolsand the semantics
of the Mocha RM modeling language. Although the ap-

IPTEL2001

proach we use is not general enough to be applied to all
possible environmental behavior, it issuitablefor the envi-
ronmental behavior defined by the DFC architecture.

In practice, the customized parser that we built for Java
programs turned out to be very useful by itself for writing
ECLIPSE Statecharts. Our experience validates the use
of statically-checked constraints that formalizes software
architectures. Several general toolsfor expressing such ar-
chitectural constraints on code have been proposed; see
[EX] for references and the description of CoffeeStrainer, a
tool for checking Java programs.

X. CONCLUSIONS AND FUTURE WORK

We have built a tool, ECLIPSE2Mocha, for analyz-
ing the communication behavior of an ECLIPSE feature
and its immediate environment. ECLIPSE2Mocha is ca-
pable of detecting subtle semantic errors of ECLIPSE
feature code and using the Mocha reporting features
ECLIPSE2Mocha is well suited as a debugging aide for
ECLIPSE features. Our translation of ECLIPSE feature
code to RM caode relies on a crucial abstraction — namely,
the modeling of asynchronous communication via un-
bounded queues by synchronous communication. How-
ever, because we restrict the types of properties analyzed,
errors detected by ECLIPSE2M ocha can be translated into
errors of the ECLIPSE feature code.

For the future we see several interesting directions to
take thiswork. Firstly, we see a need for an intermediate
language between the Java code of ECLIPSE Statecharts
and RM. Such an intermediate language would make the
use of other analysistools far easier and remove the need
for a direct mapping between ECLIPSE Statecharts and
RM. Secondly, we would like to explore the use of model
checkersof hierarchical models[lid] to avoid the flattening
phase currently used by ECLIPSE2Mocha. Thirdly, weare
interested in incorporating ECLIPSE2Mocha and the use
of Mocha directly within a domain specific compiler for
ECLIPSE Statecharts.

Finally, we would liketo enhance the class of properties
checked. This can be done by enlarging the type of envi-
ronmental entities used in the analysis and by more faith-
fully modeling the unbounded queues and asynchronous
communication of ECLIPSE. These enhancements would
allow us to check significantly more feature interaction
properties.

ACKNOWLEDGMENTS

The authors would like to thank the other members
of the ECLIPSE project at AT&T Labs — Research for
their feedback during the development of ECLIPSE State-
charts and the analysistool: Eric Cheung, Andrew Forrest,

108

Michael Jackson, Hal Purdy, Chris Ramming, Xiaotao Wu
(Columbia University) and Pamela Zave.

REFERENCES

[1] Michael Jackson and Pamela Zave, “Distributed feature com-
position: avirtual architecture for telecommunications services,”
IEEE Transactions on Software Engineering, vol. 24, no. 10, pp.
831-847, Oct. 1998.

[2] David Harel and Eran Gery, “Executable object modelling with
Statecharts,” |EEE Computer, July 1997. [l

[3] Object Management Group, OMG Unified Mod-
eling Language Specification, version 1.3, Ob-
ject Management Group, June 1999, Available at

rTH-//TTDH _Ooma_ora/niin/ adocs/ 30/ 9Y—(16-0X% _DAT |,
i

[4] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer,
Sriram K. Rajamani, and Serdar Tasiran, “Mocha: Modularity
in model checking,” in Proceedings of the Tenth International
Conference on Computer-aided Verification (CAV). 1998, num-
ber 1427 in Lecture Notes in Computer Science, pp. 521-525,
Springer-Verlag. I3

[5] L.deAlfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Ma-
jumdar, F. Mang, C. Meyer-Kirsch, and B.Y. Wang, Mocha: Ex-
ploiting Modularity in Model Checking, August 2000, Available
at OLLD: /7 /WWW-CAda . eeCS .. Derkelev . eau/ Mmocrie.
I

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985. [

[7] S. Gnesi, D. Latella, and M. Massink, “Model checking UML
Statechart diagramsusing JACK,” in Proceedingsof the 4th IEEE
International Symposium on High-Assurance Systems Engineer-
ing, 1999, pp. 46-55. IEd

[8] E. Mikk, Y. Lakhnech, M. Siegel, and G.J. Holzmann, “Imple-
menting Statechartsin PROMELA/SPIN,” in Proceedings of the
2nd |EEE Workshop on Industrial Srength Formal Specification
Techniques, 1998, pp. 90-101.

[9] J. LiliusandI.P. Paltor, “vUML: atool for verifying UML mod-

els” in Proceedings of the 14th IEEE International Conference

on Automated Software Engineering, 1999, pp. 255-258. [

Chonlawit Banphawatthanarak and Bruce H. Krogh, “Ver-

ification of stateflow diagrams using SMV: sf2smv 2.0

Tech. Rep., Dept. of Electrical and Computer Engineer-

ing, Carnegie Mellon University, June 2000, Available at

T TD:/ /WWW._ece Cmil.eqall/ Krodar, m

B. Bokowski, “Statically-checked constraints on the definition

and use of typesin Java,” in Proceedingsof ESEC/FSE’ 99, 1999,

vol. 1687 of LNCS, pp. 355-375. [

R. Alur and M. Yannakakis, “Model checking of hierarchical

state machines,” in Proceedings of the Sixth ACM Symposium

on the Foundations of Software Engineering, 1998, pp. 175-188,

Availableathtto: //www.c1s.upenn.edu/ alur. [

[10]

[11]

[12]

ftp://ftp.omg.org/pub/docs/ad/99-06-08.pdf
http://www-cad.eecs.berkeley.edu/~mocha
http://www.ece.cmu.edu/~krogh
http://www.cis.upenn.edu/~alur

	Introduction
	DFC
	Inter-Port Messaging
	Port Protocols
	Feature Logic Analysis
	Translation
	Parsing and Creating the Hierarchical FSM Model
	Flattening
	Instantiation
	Preliminary Semantic Checks
	Action Separation

	Creating the Reactive Modules Model
	The Model Checker Mocha
	The RM Model

	Model-Checking ECLIPSE Statecharts
	Related Work
	Conclusions and Future Work

