MONA Tutorial
Automata-based Symbolic Computation

Nils Klarlund

klarlund@research.att.com

AT&T Labs-Research BRICS, University of Aarhus
ATT == BRICS

MoNA Tutorial

Goals

Practical introduction to crunching formulas in an almost undecidable logic:
the monadic second-order theory of numbers

A little theory; comparison to BDDs and model checking

Applications: verification, program analysis, parsing

Sense of possibilities and limitations

MoNA Tutorial

What we’re going to do

e simple MONA examples
e features of the MONA tool
e indicate how does it work

e larger examples

— pointer verification
— sliding window protocol verification
— application to parsing

e projects using Mona

MoNA Tutorial

e comparison to model checking

e future work

MoNA Tutorial

Mona Essentials
MonNA

e is a logic notation
e is a decision procedure (deciding the validity status of formulas)

e calculates for any formula an automaton that describes the possibly
infinite set of all satisfying interpretations

e to decide a formula means producing this automaton

Note: we just revealed an exciting property: the set of all models is finitely
describable and the description is computable!!!

MoNA Tutorial

BDD Essentials

BDD = Binary Decision Diagram

A special kind of automaton that accepts a language of strings of
bounded length

Quantified Boolean Logic
Crunching BDDs constitutes a decision procedure

It calculates for any formula an BDD that describes the finite set of all
satisfying interpretations

MoNA Tutorial

So,...

This talk is about exploring symbolic computations based on finite-state
automata, all of them, not only the BDD ones.

MoNA Tutorial

Our first program

MONA logic is about natural numbers and sets of natural numbers.

Example: simple.mona is

var2 P,Q;
P\Q = {0,4} union {1,2};

Formula is not always true, but interpretation assigning {0,1,2,4} to P and
{} to Q makes it true.

MoNA Tutorial

At the heart of the matter |

This interpretation [P — {0,1,2,4},Q — {}], can also be represented by Os
and 1s in a string

AOIOIBIAION

where letters are bit-vectors.

e P-track is 111010

e Q-track is 000000

MoNA Tutorial

At the heart of the matter |l

We define the language associated to simple.mona as the set of such finite
strings that define satisfying interpretations.

MONA is able to analyze simple.mona automatically by translating it into
the minimum automaton recognizing the set of satisfying interpretations.
The command

mona simple.mona

produces the automaton, analyzes it, and generates the following output:

10

MoNA Tutorial

Output from simple.mona

A counter-example of least length (0) is:
P X

Q X

P={}

Q={}

A satisfying example of least length (5) is:
P X 11101

Q X 000X0

P={0,1,2,4}

11

MoNA Tutorial

For the logicians: WS1S

Weak Second-order theory of 1 Successor

e Monadic second-order logic with successor function “+1" and “0".
e Note: no addition.
e First-terms interpreted as natural numbers.

e Monadic means: only unary predicates may occur as second-order
variables.

e Thus second-order terms denote sets of natural numbers.

e “Weak” means these sets are finite.

12

MoNA Tutorial

Syntax summary
e First-order terms ¢

— constant 0, variables p
— successor terms t’' + k, where t' is a term, k£ number

e Second-order terms T

— constant (), variables P
_ T/ U T/’ T/ m T//’ T/\T//
— no complement operation

e Formulas ¢

—t=t,t<t, T=T,teT

—Jp:¢), Vp: ¢
— dP : ¢', VP : ¢

13

MoNA Tutorial

Example explaining it all: even.mona

14

MoNA Tutorial

var2 P,Q;
P\Q = {0,4} union {1,2};

varl x;
varO A;

ex2 Q: x in Q
& (alll q:
(0 < q&q<=x) =
(g in Q => q - 1 notin Q)
& (g notin Q => g - 1 in Q))
& O in Q;

A & x notin P;

15

MoNA Tutorial

o = T 2 R v B~

i T 2 IR v B~

Output: even.mona

counter-example of least length (1) is:
XX

XX
X1
0 X
= {}, Q =4{}, x =0, A = false
satisfying example of least length (7) is:
X 1110100
X 000X0XX
X 0000001

1 XXXXXXX

= {0,1,2,4}, Q = {3}, x = 6, A = true

16

MoNA Tutorial

even.mona: what is actually going on?

Let us look at the automaton that represents all satisfying interpretations

17

MoNA Tutorial

XXX o

18

MoNA Tutorial

Remark: what is a BDD?

Consider ¢ = x1 V (22 < x3). Variable order is z1, z2, x3.

19

MoNA Tutorial

even.mona: the BDD-based represenation

This automaton is different from the one just shown. It has been formatted
from the internal representation.

20

MoNA Tutorial

We forgot predicates

21

MoNA Tutorial

var2 P,Q;
P\Q = {0,4} union {1,2};

pred even(varl p) =
ex2 Q: p in Q
& (alll q:
(0 < q&q<=p) =>
(g in Q => q - 1 notin Q)
& (q notin Q => q - 1 in Q))
& O in Q;

varl x;
varO A;

A & even(x) & x notin P;

22

MoNA Tutorial

How the decision procedure works

e w F ¢ means the string w, viewed as an interpretation, satisfies ¢.

o Let L(d) = {w | wE ¢}

e Prove by induction that all L(¢) are represented by DFAs.

— atomic formulas by direct construction of small automaton

— — by complementation

— A by product construction

— d by projection, a slightly subtle trick, and subset construction

MoNA Tutorial

Classical results

L(¢) is regular

Buchi, Elgot, 1960

Consider any translation ¢ — A with L(¢) = L(A). Then:

‘2C‘TL
92" } ¢

is a lower bound for A's
state space

Meyer and Stockmeyer, 1974

24

MoNA Tutorial

In practice?

e Unfortunate fact: n free variables means alphabet has size 2™; seems to
preclude any practical applications.

e Think of automata as representing a language over B instead of BF.
That helps, but still large overhead.

e BDDs for compressing states? Easier said than done!

e For example, one single BDD code could encode the set {(r,a,s) | r =
s}, where r and s are states and a € BF is a letter. But how to minimize?

e Thus, choose explicit state representation, but encode alphabet.

25

MoNA Tutorial

Decision procedure works for trees, too

e WS2S, Weak Second-order theory of 2 Successors, deals with elements
and finite subsets of the infinite, binary tree

(0+1)* = {¢,0,1,00,01, 10, 11,000, ...}

e The transition function of a tree automaton determines for each pair
(r,s) of states and each letter a what the next state is.

e Tree automata are at least quadratically more difficult to work with in
practice.

26

MoNA Tutorial

Related work

So, somebody must have noticed these BDD-represented automata?

Yes, Fisher and Gupta, 1993 who suggested linear inductive functions
as a notation for regular languages on large alphabets. They showed that
these functions could be represented as automata very similar to ours, but
they did not exploit the connection to logic.

Automata on large alphabets are also implicit in the work on the relationship
between p-adic numbers and circuits by Vuillemin, 1995.

Many experimental systems exist for automata calculations with modest-
sized alphabets.

27

MoNA Tutorial

End of digression, back to Mona tool

Sometimes things don't go as fast.
characters long.

mona -s t60.mona

Let us try a formula that is 65,000

28

MoNA Tutorial

The Mona tool

36,000 lines of C, C++
downloaded directly from BRICS 4500 times

heavily optimized

— BDD algorithms: minimizing cache miss complexity
— preprocessing: sophisticated analysis and manipulation of code tree

three-valued logic to avoid spurious state-space explosions

along with other features...

29

MoNA Tutorial

Feature: visualization
Output to the AT&T Labs graphviz tool.

mona —-gw even.mona > even.dot
dot -Tps even.dot -0 even.ps

30

MoNA Tutorial

Feature: separate compilation

MONA can be used so that all automata corresponding to predicate
applications are stored in an automaton library, and automatically reused in
subsequent executions of MONA.

31

MoNA Tutorial

Feature: restrictions

A where restriction where p can be added to a variable declaration for p.
Whenever a subformula contains p as a free variable and an interpretation
does not satisfy p, the value of the subformula is deemed 1. So, MONA is
in fact three-valued!

varl $ where $ <= 5;
varl p where p <= §;
p > 5;

Example:

The status of ¢9 = p > 5 under the interpretation [p — 4] is L if ¢ > 5 and
0 for « < 5. In particular, p > 5 is not satisfiable under the conjunction of
the restrictions for p and $.

This relativization technique works thanks to some nice congruence-theoretic
arguments about regular languages.

32

MoNA Tutorial

Feature: Exporting and importing automata

e ".dfa’-format

e Export:

export (" filename", ¢)

e Import:

import ("filename", n1=->ny, na=>ngy, ... , NE=>n;)

33

MoNA Tutorial

Feature: Presburger arithmetic

e Presburger arithmetic has formulas built of natural number constants
and variables, equality, first-order logical connectives and addition.

e Presburger arithmetic can be encoded by letting numbers be expressed
as sets in WS1S according to their binary presentation.

e pconst(/)

encodes the natural number I as a second-order value using least-
significant-bit-first encoding.

e All operations encoded as M ONA predicates.

Comparisons between Mona and alternative implementations of decision
procedures for Presburger arithmetic show no clear winner.

34

MoNA Tutorial

Feature: Reusing intermediate results

MONA code is stored in a DAG (Directed Acyclic Graph), not a tree. The
atomic formulas are located in the leaves and the composite constructs are
in the internal nodes. We DAGify according to:

Two formulas are syntax-equivalent if their code trees are identical.

Two formulas ¢ and ¢’ are signature-equivalent if there is an order-
preserving renaming of the variables in ¢ (i.e., increasing w.r.t. the
indices of the variables) such that ¢ and ¢’ become syntax-equivalent.

This DAG-representation means huge gain in practice when machine-
generated MONA code is translated.

35

MoNA Tutorial

Example: reasoning about queues

Model queues of arbitrary length that contain elements in {0,1,2,3}. Idea:
use three second-order variables:

e Qe denotes the used positions, so we assume it is an initial subset of the
natural numbers.

e The four possible membership status combinations that a position p has
relative to Q1 and Q2 encode the value stored at position p.

Goal: do reasoning about insertion and deletion of elements in lossy queues,
which may drop elements.

36

MoNA Tutorial

Queues: basics

pred is1(...)
pred is2(varl p, var2 Qe,Q1,Q2) = p in Qe & p in Q1 & p notin Q2;

1t compares the elements at positions p and q of a queue
pred 1lt(varl p, q, var2 Qe, Q1, Q2) =
(isO(p, Qe, Q1, Q2) & ~is0(q, Qe, Q1, Q2))
| (is1(p, Qe, Q1, Q2) & (is2(q, Qe, Q1, Q2) | is3(qg, Qe, Q1, Q2)))
| (is2(p, Qe, Q1, Q2) & (is3(q, Qe, Q1, Q2)));

pred isLast(varl p, var2 Qe) =
p in Qe & (alll q’: q’ in Qe => q’ <= p);

etc.!

37

MoNA Tutorial

Queues: playing with definitions

Is there an ordered queue Q of length 4 and a queue Q’ such that
Q’ contains the value 3 and is the same as Q with one element removed?

var2 Qe, Q1, Q2; # the queue (
var2 Qe’, Q1’, Q2’; # the queue Q’

assert isWfQueue(Qe);

Queue(Qe, Q1, Q2, 4); # the queue Q is a queue of length 3
containing the elements O, 1, 2, 3

LooseOne(Qe, Q1, Q2, Qe’, Q1’, Q2’); # Q’ is Q except for ome

exl p: is3(p, Qe’, Q1’, Q2’); # Q’ does contain the element 3

38

MoNA Tutorial

Queues: solution

MONA says:

A satisfying example (for assertion & main) of least length (4) is:

Qe X 1111
Q1 X 0011
Q2 X 0101
Qe’ X 1110
G1° X 001X
Q2° X 011X

Qe = {0,1,2,3}, Q1 = {2,3}, Q2 = {1,3}, Qe’ = {0,1,2}, Q1’ = {2}, Q2’ = {1,2}

So, Q@ =(0,1,2,3) and @' = (0,1, 3) is a solution.

What is clear: WS1S is not a convenient specification language by itself.
We need a higher-level notation.

39

MoNA Tutorial

Decidable program logic for pointers
FiDo

e Can model list and pointer variables (as long as list elements are
bounded).

e Can represent precise semantics of basic blocks (loop-free code).

e Can be used to express assertions in a first-order language.

Thus, we have a decidable fragment of Floyd/Hoare program logic.

40

MoNA Tutorial

Stores
List variables

Pointer variable

No general graphs, of course!

Garbage cells

41

MoNA Tutorial

An example in Pascal

Let us declare a type Item of list elements that contains a tag field with

value red or blue:

type Color = (red,blue);
List = "Item;

Item = record

case tag: Color of
red,blue: (next: List)

end ;

42

MoNA Tutorial

Verifying a list zipping program

program zip;
{data}var x,y,z: List; {pointer}var p,t: List;

begin
if x=nil then
begin
ti=x; x:=y; y:=t
end ;

z:=nil; p:=nil;
while x<>nil do

begin
if z=nil then
begin
Z:=X; P:=X;
end
else
begin
p~ .next:=x;
p:=p” .next
end;

x:=x".next;

43

MoNA Tutorial

p_ .next:=nil;
if y<>nil then
begin
t:=x; x:=y; y:=t
end
end
end.

44

MoNA Tutorial

We need an invariant

Invariant: x is only empty if y is empty, and p points to the last element
of z.

So, we annotate while-loop with assertion

{ (x=nil => y=nil)
& z<next*>p & (z<>nil => p~.next=nil)}

Then, the program is verified by the push of a button.

45

MoNA Tutorial

Predicate transformer semantics |

e a predicate points-to(c, B) holds iff the cell at a contains a pointer that
points to (3

e this predicate is definable for a well-formed store
o {P}5{Q}
e S is a piece of straight-line code, e.g. p~.next:=x;

e the store after is the same as before except that the predicate
points-to(a, B) has changed for o = p

e let Q' be (), where we use modified points-to(a,)

46

MoNA Tutorial

Predicate transformer semantics ||

e WIE' describes a well-formed store

e this property can be formulated as a fixed-point formula based on the
points-to(a, B) predicate
e the sets of cells that can be reached from the root of the data structures

— are disjoint, and
— their union is everything that is allocated.

47

MoNA Tutorial

Predicate transformer semantics |l

e a fixed-point formula can be encoded using second-order quantifier.
e WF is built into the assumptions of points-to(a, 3)

e so all we need to do is to verify:

P — Q' NWF

e which is interpreted over the well-formed initial stores

48

MoNA Tutorial

Fido formulation (15k)

type Label = Null,Lim,Item_red,Item_blue;
type Elm = Label(next: Elm) | empty;

func Type_Item(tree s_0:Elm; pos mu_a:Elm):

mu_a=Item_red or mu_a=Item_blue
end;

func WfStore’ (tree s_0:Elm): formula;
exists set x_Cells: s_0.(
List_x_After(s_0,x_Cells);
exists set y_Cells: s_0.(
List_y_After(s_0,y_Cells);

formula;

49

MoNA Tutorial

RecordCells_After(s_0,x_Cells + y_Cells);
NullSet(s_0,x_Cells * y_Cells)))
end ;

func Check_Validity(tree s_0:Elm): formula;

50

MoNA Tutorial

Mona formulation (50k)

varl $;
defaultwherel(p) = p<=$;
Type environment

var2 GO;
var2 S0,S1;

pred FUNC_DeAllocCheck_IF1_L_5(var2 GO_s_0O,var2 S0_s_0,S1_s_0) =

((ex2 GO_445,50_445,51_445: (((GO0_445=G0_s_0) & (S0_445=S0_s_0) & (S1_445=S1_s_0)))

& FUNC_DeAllocCheck_IF1_IL_4(G0_445,S0_445,S1_445)) & (ex1 POS_mu_O: (TYPE_Elm(POS_mu
& ((ex1 PO0S448: ex2 G0_449,50_449,S1_449: (((G0_449=G0O_s_0) & (S0_449=S0_s_0) &
(81_449=S1_s_0))) & (P0S448=P0S_mu_0) & FUNC_Root_y_IF1_L_1(G0_449,S0_449,S1_449,P0S4:
& (“(exl P0S452: ex2 G0_453,S0_453,51_453: (((GO_453=G0_s_0) & (S0_453=S0_s_0) &
(S1_453=S1_s_0))) & (P0S452=P0S_mu_0) & FUNC_DeAlloc_0(G0_453,S0_453,S1_453,P0S452))).

pred FUNC_Succ_next_IF1_L_1(var2 GO_s_O0,var2 SO0_s_0,S1_s_O,varl POS_mu_a,varl POS_mu_

51

MoNA Tutorial

Sliding window protocol

The classic protocol studied in verification is the alternating bit protocol.
A bit is used to acknowledge the receipt of a message.
In the sliding window protocols, a sequence number is used as an acknowledgment.

The window size is the number of messages that can be in transit.

52

MoNA Tutorial

Sliding window protocol modeling

e We'll use IOA (Input/Output Automata) notation
e Reasonable level of abstraction:

— not a program

— but close
e We'll model

— unbounded queues,
— unbounded channels, and
— dynamic window size.

53

MoNA Tutorial

Sliding window protocol in a picture

sendpkt SR (d)

'

send (d)
—>

rcvpktRS (1)
-

ChannelSR (p)

rcvpktSR(i).>

ChannelRS (p)|--

Receiver deliver(dL»

sendpktRS (i)

54

MoNA Tutorial

Proving safety property “What goes out is what goes in”

IOA description of general protocol

two uses of abstract interpretation techniques

IOA description of abstract protocol

whose transition relation — is WS1S (at least intuitively)
our IOA to MONA translator proves that part

extend safety property to a presumed invariant ¢

verify by “push of a button” ¢(S) A S — S" A ¢(S').

55

MoNA Tutorial

Applications of tree logic:
parsing with logical side constraints

Syntax = context-free grammar + side constraints
The full grammar may be:

e not context-free;
e outside tractable grammar classes;
e too large; or

e unintutive and hard to maintain.

56

MoNA Tutorial

A simple HTMLO grammar

H:HE
| E

E : H
| H
| <i> H </i>
| L
| word

L : /* empty */
| L H

57

MoNA Tutorial

No nested anchor tags

H: HE H: H E
| E | E’

E: H' E': H'
| H | <i> H' </i>
| <i> H </i> | L"
| L | word
| word :

L : /* empty */ L' : /* empty */

| L H | L' H’

58

MoNA Tutorial

Constraints yield large grammars

e No nested anchor tags: 6 nonterminals.
e List are nested to depth at most three: 12 nonterminals.

e If any part of an anchor text is in boldface, then all anchor texts must be so in full: 16
nonterminals.

If all constraints are imposed simultaneously, we get more than 100 nonterminals.

59

MoNA Tutorial

Checking constraints

context-free grammars: difficult, not modular,
tree-walking procedures: programming, parse trees;
attribute grammars: explicit flow; but

logical side constraints: expressive, modular, efficient!

60

MoNA Tutorial

Parse tree logic

Terms:
t:$% theroot
| .2 the ¢'th child node of ¢
| « a first-order variable
Term types:
T: N any production of nonterminal N
| N[j] the j'th production of nonterminal IV

61

MoNA Tutorial

Formulas:

qb Ct1<to
| ti=t2
| —¢
| p1=> 2
| p1AP2
| ¢1V 2
| Ja:T.¢p
| Vaoir.¢

Parse tree logic

ancestor relation
equality

negation

implication

conjunction

disjunction

existential quantification
universal quantification

62

MoNA Tutorial

Example formulas

e No nested anchor tags:
Va:E[1]. =3b:E[l].a < b

e List are nested to depth at most three:

—3a,b,c,d:E[4l.a<bAb<cAc<d

e If any part of an anchor text is in boldface, then all anchor texts must be so in full:

Ja:E[1].3b:E[2].3w: E[5].a<w A b<w
U
Vw:E[5].(Fa:E[l]l.a<w) = (Ib:E[2].b< W)

63

MoNA Tutorial

The rest: encoding

|dea: encode parse trees as binary trees. Interpret logic over these trees. Calculate
automata that represent synthesized attributes. Generate Bison (Yacc) code for these.

It works and parsers become very fast.

64

MoNA Tutorial

Some projects using Mona

e The PVS Specification and Verification System
e PALE - The Pointer Assertion Logic Engine.

See Web-site for more

65

MoNA Tutorial

Comparison with model checking

Is one stronger than the other?

e Model checking: given a (compact) representation of a finite-state system and a formula
¢, decide whether all infinite computations satisfy ¢.
e Logic-automaton connection: determine validity of a formula ¢ on all finite

computations.

Some problems, such as determining whether a safety property holds of a finite-state system,
can be solved using either approach; but in general, the approaches are incomparable.

66

MoNA Tutorial

Future work

Lots of interesting theoretical and practical problems left to study:

e finish a final high-level language (based on FMona and Fido)
e automata-based analysis of XML grammars

e much reasoning about programs boils down to nitty-gritty arguments that can be
carried out through automated decision procedures; how to apply abstract interpretation
without being entangled by theorem proving

e reformulate advanced regular expressions (Perl) in a more readily understandable
declarative manner—and translate them into finite-state automata guaranteed to run
fast

e integrate such techniques with parser generators

e study the problem of making automata-algorithms such that the logic-automaton
connection is presented here subsumes BDD to within a constant factor

e generalize the algorithm presented here to the w-theoretic framework—thus extending
the techniques of Vardi & Wolper for converting temporal logic to automata

67

MoNA Tutorial

Joint work with

Michael I. Schwartzbach (programming language applications, FIDO)

Anders Mgller (Mona development and implementation)

Niels Damgaard

Mark Smith (protocol verification)

Jackob Elgaard, Jacob Jensen, Michael Jgrgensen (pointer verification)

68

MoNA Tutorial

The MoNA homepage http://www.brics.dk/mona/

®
0o Thel

Welcome to the MIONA/FIDO Froject homepage!

o Introduction - se wnat the MONA/FIDO Project is about.

« Demonstration rew - try the tive interactive demeo of MON A/

« Downloading rew - MONA version 1.3 is now svailable!

- NUAJ wew: - read the complete User Manual for MON A version 1.3,
. Eﬂm- read about MONA and its applications.

. &t_@tﬁ - current project status and future plans,

- TeaChing Material - siides. notes. etc. about MONA.

. Related PrUjectS - our collection of links to related projects.

« MONA/FIDO People - tne peopie behind MONA and FIDO.,

1f wou have any gquestions, bug reports or ideas for future versions, please contact us by email on the address monaf@brics dk.

Last updated Qctober {6 1998 by Anders Moller

