
Towards SMIL as a Foundation for Multimodal, Multimedia Applications

Jennifer L. Beckham*, Giuseppe Di Fabbrizio**, Nils Klarlund**
*University of Wisconsin

Madison, WI 53706

**AT&T Labs – Research
180 Park Avenue, Florham Park, NJ 07932

jbeckham@cs.wisc.edu, {pino,klarlund}@research.att.com

Abstract
Rich and interactive multimedia applications, where audio,
video, graphics and text are precisely synchronized under
timing constraints are becoming ubiquitous. Multimodal
applications further extend the concept of user interaction
combining different modalities, like speech recognition, speech
synthesis and gestures. However, authoring dialog-capable
multimodal, multimedia services is a very difficult task.
Fortunately, the W3C has sponsored the development of SMIL,
an elegant notation for multimedia applications, which has
been embraced by both Microsoft and RealNetworks. In this
paper, we argue that SMIL is an ideal substrate for extending
multimedia applications with multimodal facilities. SMIL as it
stands is not a general notation for controlling media and input
mode resources. We show that all what is needed are few
natural extensions to SMIL along with the addition of a simple
reactive programming language that we call ReX. Our
language is designed to be maximally compatible with existing
W3C recommendations through a generic event system based
on DOM and an expression language based on XPATH. It is
also designed to be simple so that the fundamental notion of
seeking time (e.g. going backwards and forwards in
presentations) is preserved.

1. Introduction
A multimodal application combines several modes of input
such as speech recognition, keyboard, and pointing devices
with several modes of output, visual display, text-to-speech
(TTS), etc. Interactions with multimodal user interfaces
provide rich and versatile communication with a computer.
Such interfaces are extraordinarily hard to program or even
specify. Thus, a common accepted terminology for such
applications would not only further their understanding, but
also promote their actual use in Web browsers and portable
devices. Fortunately, under the auspices of the W3C, major
players in this area, such as Microsoft, RealNetworks, and
Macromedia, have agreed on a standard called Synchronous
Multimedia Integration Language (SMIL, pronounced
“smile”) [3].
Although SMIL will allow media such as HTML extended
with time concepts, PowerPoint slide shows, and Flash Player
presentations to be described in one framework, SMIL does not
integrate other modalities than mouse clicks for interactive
presentations. In this paper, we outline a framework for doing
so by (1) extending SMIL with some additional concepts and
(2) suggesting the incorporation of ReX (Reactive XML), a
reactive programming language based on XML standards. Our
work is particularly suited for integrating speech recognition
with multimedia applications.
Let us briefly discuss one such application. AT&T has
developed a multimodal spoken dialogue system for accessing
information in the AT&T personnel database, mVPQ
(multimodal Voice Post Query) [1][2]. The system allows a
user to request information associated with an employee, ask
for help, and request other actions such as calling, paging or

faxing. Along with spoken dialog, mVPQ also provides a
visual display, pointing device, and soft-keyboard. Together,
these modalities allow for clear and simple interaction with the
database. Ambiguities are easily clarified with a combination
of visual and audio input.
Current interactive systems like mVPQ include a dialog
manager and a natural language understanding modules to
achieve effective interaction with a user. Dialog management
for spoken dialog systems could use different techniques
ranging from simple state machines to more advanced machine
learning techniques. It is not the purpose of our proposed
SMIL/ReX integration to replace the dialog manager. Rather,
our framework allows a dialog manager to describe concisely
the media relationship within each dialog step in precise and
flexible ways.
For those purposes, existing IVR-based standards, like
VoiceXML [5], developed by a consortium of AT&T, IBM,
Motorola, and Lucent, is not a suited notation with its simple-
threaded execution model. VoiceXML is in some ways based
on simplistic platform assumptions not present in SMIL; for
example, in VoiceXML, the rendering of audio is done by
queuing. This mechanism creates a conceptual problem: the
program counter is not synchronized with the audio rendering.
But it also creates a practical problem: there is little control
possible of the rendering itself except for aborting it.
Moreover, VoiceXML assumes no graphical support; in
particular there is no integration of multimedia. We shall see
how SMIL solves these problems, while allowing support for
multimodal input through ReX.

2. SMIL and its Advantages to Audio Rendering
A SMIL document consists of media elements that render static
visual surfaces or play audio or video. The temporal
relationships among media elements are determined by time
elements of which there are three kinds:

• seq elements execute their children in sequence;
• par elements execute their children in parallel; and
• excl elements execute one child at a time as in a state

machine.
The beginning and end of time and media elements may be
linked to the execution of other elements or to user interface
events.

2.1. A Simple Example

To display the text “listening!” in an HTML div element
named prompt_area so that the text is displayed every three
seconds for a duration of one second, we may write

<SMIL:text id="listening"
region="prompt_area" begin="0;
listening.end + 2" dur="1">

listening!

</SMIL:text>
Here <SMIL:text> … </SMIL:text> is an XML element
named text (SMIL: just identifies it as part of SMIL). This
element has only one child, which is a string “listening!” In
general, an element may contain a sequence of child elements

and strings interspersed. The element also has attributes,
which define name/value pairs. For example, the attribute
region has value prompt_area (e.g. the name for the div
container where the text is to be rendered). For the rest, begin
specifies that the first rendering is to start at time 0 (relative to
the start of the execution of the parent element) or two seconds
after the element named listening, namely itself, stops
playing; and the dur element specifies the duration of display
to one second.

2.2. The Time Graph

The semantics of SMIL is explained in terms of a dynamically
changing time graph that records relationships between events
through what are called synchronization arcs. For example, a
time element X can be set with an attribute begin=

"YName.end + 2" to specify that it starts two seconds after
another time element Y named YName has ended.
SMIL is designed to make such dependencies easy to express
in a declarative way; similar effects in languages like Java or
JavaScript would require tedious code for dynamically setting
up pointer structures among threads.
The event delegation mechanism relies on explicit registration;
reactive programming languages like SDL [7] and Esterel [6]
have been designed to avoid such detailed programming.
Instead, threads may directly observe events or signals
generated elsewhere. It is sensible and interesting that SMIL
has adopted a similar approach, through synchronization arcs.
However, a traditional concept of event generation bubbling
and handling is still needed for handling of user input.

2.3. Adding Speech Recognition

We now return to our example. While the "listening!" message
is flashing, we would like to enable speech recognition with a
grammar names.grm and render a spoken message. Obviously,
these three activities are to take place at the same time, so we
use the par element with three children, each child
representing a thread of execution:

<SMIL:par end="asr.recognition">
<SMIL:text id="listening"

region="prompt_area" begin="0;
listening.end + 2" dur="1">

listening!
</SMIL:text>
<TTS:render>Who is the person you are
looking for?</TTS:render>
<ASR:listen src="names.grm"/>

</SMIL:par>
The activities so specified last until a recognition event is
raised by the ASR module. In general, the par element lasts
until all of the child elements have finished executing. In our
case, the first child never finishes executing, since it keeps
being rescheduled. Therefore, the par element together with all
its children is explicitly forced to end on a recognition event.
The <ASR:listen …”> element is an abbreviation for
handling an external resource. Note that the parallel element
clearly indicates that barge-in is allowed. To disable barge-in, a
seq element could have been used to play the prompt before
the speech recognition is engaged.

2.4. SMIL for Temporal Control of Input Modalities

With more control elements that impose conditions on media
or input modes while they execute, SMIL will allow us to very
elegantly express temporal constraints on input modalities. For
example, the element <ASR:off/> temporarily turns off
speech recognition. We can then express that a rendering of a
commercial "cheap-longdistance.strm" brought on an
interactive radio service is (a) interruptible, but only after the
first five seconds, and (b) lasts at most 15 seconds:
<SMIL:par end="asr.recognition" max="15s">
 <SMIL:audio src="cheap-longdistance.strm"/>
 <ASR:off dur="5s"/>

</SMIL:par>
Traditional IVR languages do not allow such control of
resources, in part because of the audio queuing model.

2.5. SMIL for Pausing Presentations

The audio queuing model is also the reason why traditional
systems cannot easily interrupt a presentation while making it
possible to resume it later. Such a facility is desired for
interactive radio, where a listener in an automobile may decide
to temporarily pause the playing of a newscast in order to get
local traffic conditions. SMIL allows for the concise expression
of such scenarios through the excl element:
<SMIL:excl>

<SMIL:audio begin="0"
src="8oclocknews.strm" peers="pause"/>
<SMIL:audio begin="weatherButton.click"
src="localweather.strm" peers="stop"/>

</SMIL:excl>
Here, the 8 o’clock news is interrupted when the weather
button is clicked. The peers attribute is pause to indicate that
the newscast is not stopped when interrupted, only paused. So,
after the local weather conditions are played the newscast is
resumed from the place it was interrupted. (SMIL currently
does not have facilities for expressing that the audio stream
should be slightly rewound before being resumed).

2.6. SMIL for Prioritizing Aural Information

The excl element is more than a state machine: although only
one child may play at a time, several other children may be
queued. For example, the newscast is queued above when the
weather button is clicked. In advanced audio-centric user
interfaces, more than one audio stream may be queued at the
same time. To reduce confusion, audio streams must be
characterized according to priority and how they interrupt each
other. SMIL offers an attractive conceptual framework for
doing so: children of an excl element may be partitioned into
priority classes. Each priority class is characterized by a peers
attribute to determine how members of the class interrupt each
other. The possible values are defer (don’t interrupt, but put
the interrupting peer into the queue), pause, never (don’t start
the interrupting peer), and stop (stop the current peer right
away). A priority class may also determine specific policies for
higher and lower priority elements.

2.7. SMIL for Skipping Backwards and Forwards in
Presentations

SMIL already accommodates a feature often considered
essential for interactive multimedia applications: the ability to
rewind a presentation according to synchronization points. The
emphasis of SMIL is on defining hyperlinks so that user of a
media player may jump into the middle of presentations. But,
as we shall see, the underlying concepts of history recording
and seeking the timeline easily lend themselves to solving user
interface issues for speech applications such as undo
mechanisms.

3. ReX + SMIL for Multimodal Applications
ReX is an XML-oriented language. XML is a generic notation
for labeled trees. Many XML technologies rely on XPATH [8],
a simple expression language for testing and operating on
numbers, strings, and trees. ReX is designed to promote the
reuse of standard markup languages. It addresses the concerns
of a multimodal dialog markup language with a platform that
provides: (1) a simple XML target language with a minimal
number of primitives; (2) an expressive thread control and
event system that is able to handle future and current
interactive languages like SMIL and VoiceXML; (3) a scalable
and modular approach to external components like ASR,
browsers, TTS, etc.; (4) a straightforward implementation and
maintenance of the target language interpreter; (5) an

adaptation of XML languages XSLT [9] and XPATH where
possible (XSLT is a general standardized language for
transforming XML documents). Note that a ReX or SMIL
program is itself an XML tree; also, ReX uses XML as a data
type concept. ReX is centered around the notion of events. A
ReX document defines a hierarchy of coroutines that define
reactions to events and the dispatch of events. A document
executes within one thread of control with a set of global
variables that consist of name-value pairs. All communication
among coroutines is through message passing. An event
(message) consists of an XML tree value, a priority, a set of
target coroutines described by an XPATH expression, and
behavior attributes.

3.1. Why not ECMAScript (JavaScript)?

We have already indicated that a principal obstacle to using
SMIL for multimodal applications is the lack of event handling
and event generation capabilities. Of course, the traditional
remedy is to resort to JavaScript or the standardized version
called ECMAScript. Developed for DHTML (Dynamic
HTML), JavaScript is also an essential part of VoiceXML,
where a subset is glued onto the XML-based scripting
language. Although ECMAScript is not a multithreaded
language, it would appear possible to combine it with SMIL.
However, for all practical purposes, it would be very difficult
to imagine how reversible presentations could be achieved in
such framework. The problem is that ECMAScript is based on
a comprehensive, object-oriented storage model. Thus, taking
snapshots of the store in order to implement the history
mechanism of SMIL seems like a hard problem.
Also, ECMAScript is a cumbersome notation for even simple
XML processing: while-loops are required for testing tree
properties, no standard serialization is provided, and
programming is pointer-oriented.

3.2. Event Generation and Catching

The programming of IVR systems, even at the highest user
interface level, is heavily centered on event handling. For
example, VoiceXML provides a mechanism of defining help
events that can be raised at any time during execution. Such
events are caught in a closest enclosing block defining a
handler; "closest" means closest to the point where the program
pointer is when the event is raised. Rex defines a similar
mechanism through a primitive <raise target="...">...
</raise> where the target attribute specifies the
destination of the event and where the content of the raise
element is an arbitrary chunk of XML that is the value of the
event. The name of the event is identified with the name of the
root element of the value.
Events are caught in an await statement, which is somewhat
similar to a try statement of Java or ECMAScript exception
handling. Each child of an await statement is an event
handler. The event handler is able to catch events raised
anywhere within the await statement. The first child may be an
ordinary statement; it is executed in the absence of events. As
with the SMIL excl element, at most one child is executing at
a time. The meaning of raising an event in a thread is the
conventional one: first, the event handler is located that is
syntactically closest to the current program counter location of
the thread; second, the program counter is transferred to this
event handler.
Below, we illustrate how a speech recognizer may be
controlled using events. The first part of the await statement
sends a grammar specification to the recognizer; then the
indefinite duration suspends the execution. When the speech
recognizer sends a nomatch event back to the ReX program,
the handle element is executed.
<ReX:await>

 <ReX:raise target="id(asr)" dur="indefinite">
<add-grammar src="names.grm" generate="help"/>

 </ReX:raise>
 <ReX:handle event="ASR:nomatch">
 <TTS:render>We didn’t understand you.
 </TTS:render>
 </ReX:handle>
</ReX:await>
The <TTS:render> We didn’t understand you.

</TTS:render> statement is an abbreviation for a little piece
of code that controls the text-to-speech component:
<ReX:await>

<ReX:raise target="tts" dur="indefinite">
<queue>

We didn’t understand you.
</queue>

</ReX:raise>
<ReX:handle event="TTS:done">

<ReX:exit/>
</ReX:handle>

</ReX:await>

3.3. External Components

To control input modes, ReX communicates with external
components through the event mechanism. For example, to use
speech recognition input, we declare

<ReX:use id="asr" href="..."/>
The effect of this declaration is to set up a communication link
between the resource declared in the href attribute. We
envisage that standardized components be declared. For
example, the ASR module may accept an event add-grammar.
It may also declare that it may post events like recognition
(for arbitrary parts of the Rex program to listen to), or it may
declare events that are raised in the client application such as
nomatch.

3.4. Focus Definition

In a dialog system, there is a natural notion of focus: it is what
determines what can be said and the meaning of events such as
help. SMIL does not provide such a notion; in fact, it does not
even provide a notion of keyboard focus. We suggest that
program variables are used to control the focus; our main
example declares one such variable, called focus. The name of
the variable is passed to the ASR component when it is
initialized so that speech recognition events go to where focus
direct it.

3.5. Reversible Computational Notation

A SMIL/Rex program is not meant to be computationally
expensive. Typically, it will have a handful of variables at
most. XML values that are received from outside components
are sent along with little or no modification. Although looping
behavior of programs between events is possible, such
programming is meant to be restricted to simple string
processing and searches in trees. Thus, the state of the program
does usually not change much between events. And, in this
way, ReX can be added to SMIL while keeping the history
mechanism essential to time seeking.

3.6. Checkpoint-based Resumption

To allow seeking backwards in time, a SMIL implementation
must rely on a history mechanism that record past several
events. We suggest that SMIL be augmented with a resume
mechanism that allows programmer specified temporal marks
to be specified. These resumption marks indicate an interesting
point to skip back to. A rewind button may then seek the
presentation to the last occurring mark. Similarly, if a
presentation is interrupted, then a later resumption should start
from the last occurring mark. Concretely, we envisage that a
section of a program using this mechanism is marked by an
attribute

3.7. Event-triggered Resumption

Our last contribution to the SMIL model addresses a deficiency
of traditional programming constructs to deal neatly with
temporary interruptions such as a request for help. We have
already discussed the possibility of modeling such
interruptions through an event concept. For example, in
VoiceXML, a help handler can be specified at the document
level. It may catch help events for deeply enclosed parts of the
dialog contained within some block without - and this is
somewhat surprising - transferring control out of the block.
This explanation is arrived at by assuming that the help handler
is syntactically copied onto all inner blocks not themselves
providing an explicit handler. The gist of the approach is that
event handling does not transfer control out of the interrupted
task so that any event happening during the interruption is
processed as if the interruption had not occurred. A more
substantial problem with this approach is that there is no
notion of resuming the interrupted task. Instead, it must be
restarted under programmatic control. For example, in
VoiceXML there is no way to prevent a long prompt to be
replayed from the beginning after an interruption.
Both problems are addressed by the SMIL excl concept.
However, we need to extend the SMIL model in one direction:
SMIL assumes that an interrupted task can be resumed only if
the task that interrupted finishes execution. We need to add the
possibility that events sent to an interrupted task will make it
resume. With this solution, we have solved a semantic
peculiarity of VoiceXML. Better still, this mechanism can be
combined with event-based assumption to achieve media
control not possible with VoiceXML such a resuming an
interrupted newscast at the beginning of the last story.

4. The mVPQ Kiosk Example
We have put an example together based on experiences with
the mVPQ kiosk application of AT&T. It illustrates speech
input as an alternative modality that may be turned on by the
user; synchronization of visual display, audio rendering, and
speech recognition; and of most of the features of SMIL and
ReX discussed above. A full example is beyond the scope of
this paper. The snippet below shows the core of the interaction
between SMIL and ReX.
… <!-- main thread -->
<SMIL:excl> <!-- normal thread -->

<SMIL:seq priorityClass="normal"
resume="explicit">

<!-- throw input events through 'focus' -->
<ReX:assign var="focus" expr="thread()"/>
<!-- wait for user to activate ASR -->
<SMIL:seq id="waiting"

end="name_input.onchange">
<SMIL:text region="prompt_area"

end="speak_button.onclick">
Push button 'speak' to speak, or use
keyboard.

</SMIL:text>
<!-- turn ASR on -->
<ReX:raise target="id(asr)"><turn-on
through="focus"/></ReX:raise>
<!-- enable help grammar -->
<ReX:raise target="id(asr)"><add-grammar
src="help.grm"
generate="help"/></ReX:raise>
<SMIL:par id="speech_on" resume="here">

<TTS:render>Who is the person you are
looking for?</TTS:render>
<SMIL:text id="listening"

region="prompt_area" begin="0;
listening.end + 2" dur="1">

listening...
</SMIL:text>
<ReX:await>

<ReX:raise target="id(asr)"
dur="indefinite"><add-grammar
src="names.grm" generate="help"/>
</ReX:raise>

<ReX:handle event="ASR:recognized">
<ReX:assign name="name_input"
value="event()/result"/>
<ReX:exit loc="speech_on"/>

</ReX:handle>
<ReX:handle event="ASR:nomatch">

<SMIL:par>
<TTS:render>We didn't
understand you.</TTS:render>
<SMIL:text
region="prompt_area">Please
say again.</SMIL:text>

</SMIL:par>
</ReX:handle>

</ReX:await>
</SMIL:par>

</SMIL:seq>
<!-- $name_has received a value, submit it -->

<ReX:submit
next="process_name.cgi"><name><ReX:value-
of
expr="$name_input"/></name></ReX:submit>

</SMIL:seq>
<!-- help handler -->
<SMIL:par priorityClass="instructions"

beginHandler="help" dur="10s">
<TTS:render>

Please say the name of the person you
are looking for. Or, type the name on
the keyboard.

</TTS:render>
<SMIL:text region="help_area">

Push button 'speak' to speak. Say the
name of the person.

</SMIL:text>
</SMIL:par>

</SMIL:excl> …

5. Conclusion
We have argued that SMIL is an excellent basis for multimedia
presentations augmented with speech recognition input.
Specifically, we have suggested augmenting SMIL with ReX, a
very small set of primitives from reactive programming
languages; in order to get a very expressive and concise
foundation for programming multimodal multimedia user
interfaces. Along the way, we have indicated that VoiceXML
is barely sufficient as the foundation for speech-centric
multimedia applications. We believe our ideas hold the
promise of creating a strong standardized foundation for
multimodal, multimedia applications.

6. References
[1] Di Fabbrizio, G., et al. - “Unifying Conversational Multimedia

Interfaces For Accessing Network Services Across
Communication Devices”, IEEE International Conference on
Multimedia and Expo, New York City, New York, USA, July 30 -
August 2, 2000.

[2] Di Fabbrizio, G., et al. - “Extending a Standard-based IP and
Computer Telephony Platform to Support Multimodal Services”,
ESCA workshop on Interactive Dialogue in Multimodal Systems,
Kloster Irsee, Germany, June 22-25, 1999.

[3] “Synchronized Multimedia Integration Language (SMIL 2.0)
Specification”- W3C Working Draft 01 March 2001,
http://www.w3.org/TR/smil20/

[4] “Document Object Model (DOM) Level 2 Core Specification”,
http://www.w3.org/TR/DOM-Level-2-Core/

[5] “Voice eXtensible Markup Language (VoiceXML™) version 1.0”
- http://www.w3.org/TR/voicexml/

[6] G. Berry and A. Benveniste - "The synchronous approach to
reactive and real-time systems", Proc. of the IEEE, vol. 79, n° 9,
September 1991

[7] “Specification and description language (SDL)” - ITU
Recommendation Z.100 (11/99)

[8] “XML Path Language (XPath) Version 1.0” -
http://www.w3.org/TR/xpath.html

[9] “XSL Transformations (XSLT) Version 1.0” -
http://www.w3.org/TR/xslt.html

