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1 Introduction

It is intriguing that something as bland as a syntax for trees has become one
of the leading buzzwords of the Internet era. XML (eXtended Markup Lan-
guage) is the name of this notation, which evolved from document processing
needs. This mystery is deepened by the apparent antiquity of the central idea
— that linear syntax can represent trees. S-expressions, invented 40 years ago,
are at least as general, but never became the universally accepted foundation
for data interchange and programming, despite their enormous influence in
programming language theory and artificial intelligence research. Addition-
ally, trees have been studied intensively in computer science ever since, so we
might suspect that the reason for the excitement is simply that practitioners
are catching up with methods of abstraction and representation via trees that
are well known in academia.

In this chapter, we shall see that the suspicion is easily dispelled. We look
at techniques now used in practice for dealing with XML trees, and we note
how they depart from old-fashioned uses. Because trees are objects that are
very complicated to manipulate directly through pointer updates, declarative
techniques are becoming increasingly important, especially when it comes to
exploring, mining, and constructing tree-shaped data. In particular, we will
contrast conventional concepts of database theory such as relational calculus
with that of more procedural notations for trees. We explore why the essential
problem of locating data in trees is intimately linked with tree automata and
decidable logics, somewhat in parallel to the link between query algebras and
first-order logic in relational database theory. So, we shall see why logic and
automata create interesting new research opportunities.

1.1 XML: An Important Practical Paradigm

XML [28] is a convention for representing labeled or tagged trees as a text,
that is, as a sequence of characters. In essence, the representation is a Dyck
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language, where the text corresponding to a node is delimited by beginning
and ending parentheses each of which mentions the label. The text between
these parentheses describes the children of the node.

XML is in essence a simplified form of SGML (Standard Generalized
Markup Language) [44], a notation that has been in existence for a number
of years in the specialized area of professional document preparation. The
W3C (World Wide Web Consortium, www.w3.org) launched HTML, a spe-
cific SGML markup vocabulary, as the document standard that soon would
carry most information on the Internet. Later, the W3C saw the potential
of a data and content distribution format that would be more general, and
it oversaw the pruning of SGML into XML. Most XML-related core stan-
dards are a result of work done under the auspices of the W3C, although we
shall also discuss alternative technology that has emerged as a result of the
perceived unnecessary complexity of essential XML specifications.

The labeling of data that is inherent in XML has led to the frequent
characterization of XML data as “self-describing.” Usually, this is an exag-
geration: the “description” is merely the labeling of the tree, something that
by itself carries no meaning to either humans or machines. Nevertheless, the
tagging of data is essential to a main application of XML, the representation
of irregular data that do not easily conform to the tabular view of relational
databases. The labeling makes irregularities amenable to automated process-
ing. As an example, assume that information tagged book has a certain sub-
tree structure, including descendants named author and title. Then such
a subtree may be inserted flexibly in various structures that need to mention
books, and applications can easily identify the subtree structure of a book. In
general, there is, of course, a system to the irregularities. The set of possible
structures is defined in notations called schema languages. These notations
define the types of nodes and their relations in terms of their labels.

In general, labeled graphs for representing information are called semistruc-
tured data. XML is superficially less general because it emphasizes trees. But
just as the relational data model can represent arbitrary graphs by using
attribute values as identifiers, XML allows arbitrary cross edges, something
anticipated at the most fundamental level.

1.2 Overview of this Chapter

We conclude this introduction with some motivating examples of XML appli-
cations found in current and emerging business practice. Then, in Sect. 2 we
provide a walk-through of the fundamentals of XML. We discuss the syntax
and present a mathematical model that succinctly summarizes recent official
W3C attempts to capture the essence of XML. Next, in Sect. 3, we discuss
already deployed schema notations such as DTDs, RELAX NG, and XML
Schema, and we hint at some interesting theoretical issues. In Sect. 4, we
introduce the recent program notations that are of key practical significance:
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XPath for locating nodes in an XML document, XSLT for transforming doc-
uments, and XQuery for information extraction à la SQL. Following these
practical aspects of XML, we turn to the theory of regular tree languages
in Sect. 5 because regularity and its connection to tree automata and logic
provide us with a set tools for understanding XML notations. In Sect. 6, we
relate automata and logic to XML query languages with particular emphasis
on the type checking problem. Finally, in Sect. 7, we mention some other
promising research directions.

1.3 XML Applications

Our theoretical interest in XML is supported by several classes of applications
which we briefly discuss below.

XML Documents The simplest and original application is using XML for
document markup. In these applications XML documents are relatively small,
and their primary usage is to be rendered by a browser; alternatively, they
may first be translated by an XSLT program into a format readable by a
browser.

The tree paradigm in document practice is illustrated by the data-driven
transformations of content that any modern browser implements. For ex-
ample, with CCS (Cascading Style Sheets [12]), a programmer has a sim-
ple, declarative way of characterizing the visual layout of text marked up
in HTML or XML as a function of the location of nodes in the document
tree. The more powerful transformation notation XSLT, based on a tree-
walking paradigm, is a Turing-complete functional programming language
that is also built into some modern browsers. Such notations are key instru-
ments for achieving the abstractions that put a wedge between content and
layout.

XML in Data Exchange One of the greatest promises of XML is serving as
a lingua franca in data exchange. Business data, scientific data, medical data,
virtually any data that are manipulated today by some application can be
translated to XML and exchanged directly between applications belonging to
different businesses or organizations. Although Internet applications require
much more than the ability to exchange data, our focus is on the descrip-
tion, retrieval, and transformation of data as it is exchanged. The common
thread is that different organizations would agree on a common schema for
the XML being exchanged, and then would design applications that generate
and consume XML data obeying the schema.

For example a telecommunications company may offer a service allow-
ing retail companies to set up their Web sites, including product catalogs.
Such a Web site is described most abstractly through XML documents that
summarize product descriptions through words, pictures, and links to related
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products — along with various information about the company. A descrip-
tion of the allowed and required data in a sufficiently simple formal notation
becomes a tool for describing the service to retail companies and for writ-
ing contracts. Later, the same descriptions are used by programmers of the
retail company to make sure the parametrizations they supply are correct.
Although many other system description languages exists, XML is uniquely
useful for such loosely structured and abstract data.

XML data is often generated from other data sources. For example the
XML data might be created from a relational database. A more interesting
piece of technology is a query translator. It may rewrite XQuery expressions
into SQL expressions. Recent research has focused on the problem of op-
timizing resulting SQL queries, which tend to be complex and unusual for
traditional query optimizers. Because XML is almost always generated dy-
namically in this application and needs to conform to a given schema, type
checking is expected to play a key role.

Native XML Data Pushing this idea even further, some argue to de-
sign new business applications using only XML data. Some companies are
currently building native XML database systems that include an XQuery
processor. Traditional query processing technologies apply here (query opti-
mization, data statistics, etc.), and need to be adapted and extended to the
richer XML data model. A more conservative approach is to use a relational
database system to store and process XML data. This requires technologies
for storing XML data in relational databases and for translating XML queries
into SQL queries.

XML Messaging For financial service applications, large amounts of event-
driven XML content is published and distributed to be received instanta-
neously by subscribers according to personalized criteria. Thus arises the idea
of XML content-based routing [76], where such messages are filtered and for-
warded in a network based on their content. Routing can be defined through
XPath expressions, which check conditions on XML packets. A router stores
a large number of Boolean XPath expressions that are evaluated on each in-
coming XML document. The document is then forwarded to other routers or
to clients based on the result of the evaluation of those XPath expressions.
Sometimes, XML messages are subjected to simple transformations, such as
extracting or deleting certain fields, or, say, conversion from ASCII to Uni-
code. The key technology needed is the ability to process large numbers of
XPath expressions efficiently on a stream of XML documents. More advanced
technologies require management of large collections of XPath expressions:
adding, deleting an XPath expression, testing two expressions for equality or
for containment, etc.
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2 XML Fundamentals

We introduce XML through examples. Then, we provide a formal definition of
XML that forms the basis for the logical foundation of XML in this chapter.

2.1 XML Through Examples

We present the syntax for a case that is both database and document-
oriented, a common situation for content on the Internet. Our example is
a cooking recipe, which contains both text and structural information. A
recipe in XML might look as in Fig. 1.

<recipe name="My first cake" estimated-time="1" unit="h" >

<ingredients>

<ingredient quantity="200" unit="g" name="flour"/>

<ingredient quantity="100" unit="g" name="sugar"/>

<ingredient quantity="2" unit="dl" name="milk"/>

</ingredients>

<procedure>Throw all the ingredients in a bowl and stir

<em>vigorously</em>. Pour resulting batter into a pan and b ake

for thirty minutes.

</procedure>

</recipe>

Fig. 1. An XML document: the recipe example

Illustrating all of the key concepts of XML syntax, we explain this snippet
as follows. A recipe is characterized by the attributes name, estimated-time,
and unit. Each attribute has a string value. The balanced, labeled parenthe-
ses <recipe>. . . </recipe> are called an element , which is the linear syntax
for a node labeled recipe. The beginning parenthesis <recipe> is called a
start tag and the end parenthesis </recipe> is called an end tag. The inside
of <recipe>. . . </recipe> is called the content of the node; it is a linear
notation for its children , which are ordered. In this case, there are two chil-
dren, corresponding to the elements named ingredients and procedure.
The attributes also correspond to named direct descendants, but they are
not ordered and they are not usually regarded as children. The content of
the procedure element represents three children: a text node whose value is
“Throw all the ingredients in a bowl and stir\n     ”, where  de-
notes a space and \n denotes the line separator. The second node is the one
named em; it contains the text that, presumably, is supposed to be empha-
sized. The third node is the remaining text, again including the white space
characters. This kind of data interspersed in text and elements is called mixed
content .
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Fig. 2. The tree corresponding to the recipe document in Fig. 1. Some details are
omitted. For example, the nodes n7, n8, and n9 are the attribute nodes named
quantity, unit, and name of the first ingredient

The ingredient elements have no content, but only attributes; the “/”
character after the name indicates that this tag is both a start and end tag
at the same time.

Every XML document can be represented as a tree whose nodes corre-
spond to elements, attributes, and text values. Figure 2 illustrates the tree
for the XML document in Fig. 1, but some details are omitted. The node n1

corresponds to the element <recipe> ...</recipe>, node n4 corresponds to
the attribute unit="h", and node n21 corresponds to the text "vigorously".
Note that there is a root node n0 that has no corresponding element or at-
tribute in the XML document and is called the document node.

The reader may be puzzled: apparently the characters between tags some-
times denote text nodes and sometimes not. For example, the text between
<ingredients> and <ingredient> consists of a newline character and sev-
eral spaces, but there is no such text node in the tree; on the other hand,
the text between the <procedure> tag and the <em> tag is turned into a text
node. The reason is that in the tree depiction, we have pruned all text nodes
that are not appropriate for the intended data model. So, the tree denoted
by the document above is really more complex than we would like; there are
spurious text nodes almost everywhere.

The problem is that the document does not provide any information about
which white space is significant and which is not. It may seem like a trivial
point, but in practice, even experienced programmers are struggling with
white space issues. That “self-describing” XML cannot describe even its own
white space is perhaps ironic. In practice, the problem is solved through
schemas that describe the data or through explicit programming.



XML: Model, Schemas, Types, Logics and Queries 7

quantity unit name

200 g flower
100 g sugar
2 dl milk

<row quantity="200" unit="g" name="flour"/>

<row quantity="100" unit="g" name="sugar"/>

<row quantity="2" unit="dl" name="milk"/>

Fig. 3. An example of a relational database instance and the corresponding repre-
sentation in XML

The Relational Model versus XML In the dominant relational approach
to databases, all information is represented in tables. Let us compare the two
approaches through our example. There the ingredients information can
obviously be brought in tabular form because each ingredients node has
the same three unordered attributes. Thus, the table (left) and the XML
document (right) in Fig. 3 are almost equivalent. The main difference is that
the XML representation imposes an ordering of the rows. We also note that
the XML model carries around labels, even where we may not want them
under the relational view. As indicated, we adopt the arbitrary convention
that row is the canonical label of a tuple.

Semistructured Data XML can, of course, represent more than relational
data. The kind of data it can express is called semistructured data. To explain
it, consider an alternative XML representation of the relation above:

<row>

<quantity>200</quantity>

<unit>g</unit>

<name>flour</name>

</row>

<row>

<quantity>100</quantity>

<unit>g</unit>

<name>sugar</name>

</row>

<row>

<quantity>2</quantity>

<unit>dl</unit>

<name>milk</name>

</row>

We simply moved the data values from attributes to subelements (this makes
the analogy easier with some irregular data shown below). These data are
regular, or structured: each row has exactly one quantity, one unit, and
one name. The corresponding tree representation is shown in Fig. 4. Let us
contrast this with the following XML instance:
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quantity
unit

name
quantity

quantity
nameunit

row

unit name

row row

200 gflourg200 flourg200 flour

Fig. 4. The tree corresponding to the ingredients relation of the alternative XML
represenation.

<row>

<quantity>1</quantity>

<name>apple</name>

</row>

<row>

<quantity>1</quantity>

<unit>count</unit>

<name>apple</name>

<name>banana</name>

</row>

<row>

<quantity>200</quantity>

<unit>g</unit>

<name>

<product>Corn Flakes</product>

<manufacturer>CornINC</manufacturer>

</name>

</row>

The first row has a missing unit, whereas the second row has two names.
Finally, the third row has a name that is a nested structure, rather than being
an atomic value. This example illustrates the main points in semistructured
data: data items may have missing attributes, multiple occurrences of the
same attribute, or attributes may have different types in different items.

Self-Describing Data Consider the relational data in Fig. 3: quantity and
unit are schema components, whereas 200 and flower are data values. This



XML: Model, Schemas, Types, Logics and Queries 9

distinction is crucial in a relational system, which stores schema components
in the system’s catalog, separately from data values. In fact, data are stored
in binary format and cannot be interpreted without the information from
the catalog. In contrast, XML data are self-describing because the schema
components are interleaved with data values. Schema components now have
to occur multiple times, like quantity, making the format more verbose, but
at the same time more flexible.

2.2 XML Model

What are the semantics of XML? For this question of what XML really is,
a perplexing number of models have been proposed. Departing somewhat
from the usual very simplistic view taken by XML theoreticians, we base
our terminology on the XQuery 1.0 and XPath 2.0 Data Model [39], which
is currently under development. Our model emphasizes the graph-theoretic
aspect of trees, a point of view important to program interfaces. In fact, the
standard programming model of XML, called DOM (Domain Object Model ),
is a close realization of this model: it treats nodes as objects and edges as
object references, that is, as pointers.

We assume that we have two sets at our disposition: a finite alphabet
of labels, Σ, and an infinite alphabet of data values, D. Labels model XML
tags and attributes. The XML standard rigidly specifies allowed character
encodings, including Unicode, and the ways labels and data are made from
characters. Our restriction of Σ to a finite set is needed for the development
of the logical formalisms in Sect. 6 and is consistent with practice because
tags and attributes are usually drawn from a given schema. By contrast, the
set of data values, D, is infinite and includes strings, integers, dates, etc.

We can now formally define an XML tree.

Definition 1. An XML tree t = (N,E,<, λ, ν) consists of a directed tree
(N,E), where N is the set of nodes and E ⊆ N ×N is the set of edges , < is a
total order on N , λ : N → Σ is a partial labeling function, and ν : N → D is
a partial value function ; moreover, the order must be depth-first : whenever
x is an ancestor of y, it holds that x < y.

We denote an XML tree as t = (N,E), whenever λ, ν, and < are under-
stood from the context, and we sometimes denote N as dom(t) and call it
the domain of t. We let TΣ,D denote the set of XML trees with labels from
Σ and data values from D, and TΣ denote the set of XML trees with labels
from only Σ (i.e., ν is totally undefined). Each tree t ∈ TΣ,D can be viewed
as a tree in TΣ by simply “forgetting” the data values: in other words, there
exists a canonical function TΣ,D → TΣ .

We shall adopt this simplified definition of XML trees in our discussion of
XML’s logical foundations. The reader should be warned that this is only an
approximation of the W3C standard. More precisely, each XML document
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according to the standard can be uniquely converted into an abstract XML
tree t = (N,E). Figures 2 and 4 illustrate two examples of such trees. But
the converse is not true: there are abstract trees that do not correspond
to legal XML documents: for example, data values must be attached only
to leaves. It is possible to list all conditions that would make every tree
t = (N,E) correspond to an XML document. We list here these conditions
for completeness but will not use them in the rest of this chapter:

• N is partitioned into four disjoint sets: N = {d} ∪ Elmt ∪ Attr ∪ Txt ,
where
– d is the root of t and is called the document node.
– Elmt is called the set of element nodes.
– Attr is the set of attribute nodes.
– Txt is called the set of text nodes.

• Attr ∪Txt consists only of leaf nodes: if (n, n′) ∈ E, then n ∈ {d}∪Elmt .
• Attribute children precede all other types of children: formally, if (n, n1) ∈
E, (n, n2) ∈ E, n1 ∈ Attr , and n2 ∈ Elmt ∪ Txt , then n1 < n2.

• The labeling function λ : N → Σ is defined on Elmt ∪ Attr and is unde-
fined on all other nodes.

• The value function ν : N → D is defined on Attr ∪ Txt and is undefined
on all other nodes.

• Children of the document node d must be element nodes: if (d, n) ∈ E,
then n ∈ Elmt .

A more subtle issue in the standard W3C XML specification is that the
attribute nodes that are siblings are unordered. That is, an element may
have several attribute, element, and text children, and the order relation <
has to place all attribute nodes before the element and text nodes, but the
attributes are not ordered among themselves. Thus, the order relation < is
in reality a partial relation. Definition 1 does not capture this state of affairs;
instead it defines < as a total order.

Some of the terminology in the XML standards is confusing. For example,
the children of a node n are defined as all element or text nodes n′ such that
(n, n′) ∈ E. Thus, attribute nodes are not regarded as children although
they do have parents! Also, and regrettably, there are a multitude of earlier
models: that of the original specification [28], that of DOM [47], that of the
so-called XML information set [29], and that of the earlier XPath [23].

Fortunately most important points about XML can be illustrated with the
more simplified Definition 1, and we will use that throughout the chapter,
pointing out whenever the additional details impact the logical foundations.

2.3 Some Practical and Principled Issues

Memory Model To a programmer, a node is an object, which, physically,
is a piece of allocated memory; in DOM, this object contains pointers so
that both the parent, the list of children, and attribute nodes can be reached
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in unit time. Thus, this model is fundamentally different from the storage
model of S-expressions, recursive data types, and even many database models,
where only the list of children can be reached in unit time. In contrast,
DOM programming is often based on extensive references to ancestors, often
elegantly combined with XPath, a style of programming that is not builtin or
even emphasized with recursive data structures. This difference has profound
significance for XML programming concepts.

Document Order In practice, whenever the XML document is read from a
file, the ordering < is defined as the document order—the order in which the
nodes are listed in the file. When the XML document is generated otherwise,
however, we must ensure that such a total order is given. For example, query
languages like XQuery and XSLT must formally define the order in the XML
outputs that they produce. In Fig. 2, the numbering of nodes we have chosen
is in accordance with the document order.

Sequences of Elements Usually, the document node is required to have ex-
actly one child, which must be an element. This node is sometimes called the
document element node. However, it is very attractive to be able to work with
sequences of trees; for example, if an XML file is used as a log of transactions,
a file operation of append suffices to extend the log. The XML syntax already
allows such representation in the form of files obscurely called “well-formed
external parsed entities.”

3 XML Schema Notations

For any XML application, there are two kinds of documents: those that make
sense and those that do not. XML schema languages are notations for delin-
eating the meaningful documents from those that are not, at least to a first
approximation. It is claimed that the world needs only one schema language.
In fact, we have quite a few, not only for historic reasons, but because there
are several fundamental choices to make in schema language design.

3.1 DTDs

The most widely used such metalanguage is called DTD (Document Type
Description); it is part of the original definition of XML [28]. DTDs are very
simple: for each element, a regular expression over element names specifies the
allowed content. Figure 5 illustrates a DTD for the document in Fig. 1. For
example, to specify that the content of the element ingredient is a sequence
of ingredients, we may write (in the slightly arcane syntax of DTDs)

<!ELEMENT ingredients (ingredient*)>



12 Nils Klarlund, Thomas Schwentick, and Dan Suicu

<!ELEMENT recipe (ingredients,procedure)>

<!ELEMENT ingredients (ingredient*)>

<!ELEMENT ingredient (#PCDATA)>

<!ELEMENT procedure ((#PCDATA|emph)*)>

<!ELEMENT emph (#PCDATA) | emph>

<!ATTLIST recipe name CDATA #REQUIRED

estimated-time CDATA #REQUIRED

unit CDATA #REQUIRED>

<!ATTLIST ingredient quantity CDATA #REQUIRED

unit CDATA #REQUIRED

name CDATA #REQUIRED>

Fig. 5. A DTD for the XML document in Fig. 1

Such content, called element content, does not allow any text nodes (in par-
ticular, no white space nodes.) In general, arbitrary regular expressions are
allowed to define the content of an element. Regular expressions are formed
from element names using concatenation (,), alternation (|), Kleene closure
(* and +), and optional (?). The expression ingredient* above represents
a regular expression with the Kleene closure operator. As another example
consider the following definition of the content of recipe:

<!ELEMENT recipe ((ingredients|procedure)*,winelist?) >

This definition specifies that the recipe element may contain any sequence of
ingredients and procedure subelements, intermixed in any order, followed
optionally by a single winelist element.

Alternatively, an element may be specified to allow text, possibly inter-
spersed with elements that have names in a specified set. For example, we
may declare

<!ELEMENT ingredient (#PCDATA)>

The keyword #PCDATA stands for parsed character data and denotes the fact
that the content of ingredient can be any sequence of characters.1 The
example

<!ELEMENT procedure (#PCDATA|emph)*>

says that procedure may have any text values interleaved with emph subele-
ments.

Additionally, the allowed and required attributes of each element can be
declared. For example,

<!ATTLIST ingredient name CDATA #REQUIRED>

1 In Fig. 1, all ingredient elements have an empty content, i.e. an empty sequence
of characters.
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specifies that name is a required attribute of ingredient. Finally, and some-
what controversially, attribute declarations may be associated with defaults.

Usually, a document explicitly mentions the schema to which it is pur-
ported to conform. That allows the schema processor, the software that is
often integrated with an XML parser, to read the document and process it
with its associated schema. If the document satisfies the description, then
it is called valid, and the processor constructs the tree for the document,
including inserted defaults. This notion of a validated tree is often essential
to optimization of further processing, say, by a query processor, because the
structural properties of the schema can be assumed.

Note that the DTD in Fig. 5 is recursive: an emph element may contain
text interspersed with other emph elements.

Ignoring the attributes for a moment, there is a simple but elegant con-
nection between DTDs and context-free grammars, namely, each DTD cor-
responds to an extended context-free grammar , where productions may have
regular expresions on their righthand side. Then, an XML document is valid
with respect to the DTD precisely when its associated tree is a correct deriva-
tion tree for that grammar. We illustrate with the DTD in Fig. 5. The cor-
responding extended context-free grammar is

d ::= recipe

recipe ::= ingredients,procedure

ingredients ::= ingredient*

ingredient ::= #PCDATA

procedure ::= (#PCDATA | emph)*

emph ::= #PCDATA

Here d is the start symbol in the grammar. Then, the tree in Fig. 2 is a
derivation tree for this grammar, indicating that the XML document in Fig. 1
is valid with respect to this DTD.

3.2 Regular Expression Types

Extending recursive data types of functional programming languages, regular
expression types allow us to enlarge the class of types of XML documents.
We will illustrate here regular expression types, as formulated in XDuce [48].
Fundamentally linked to tree automata for XML — see Sect. 5 — regular
expression types are also adopted by XQuery and some schema languages. In
the XDuce notation, the DTD in Fig. 5 can be represented as in Fig. 6.

Here Trcp, Tingrs, Tproc, ... are type identifiers (or type names).
Thus, Trcp is the type of a node whose tag is recipe and whose content
consists of a node with type Tingrs followed by a node of type Tproc, and
Tingrs is the type of a node with tag ingredients and with content consist-
ing of a sequence of nodes of type Tingr. There are predefined atomic types,
such as String and Int. An important idea of regular types is the separation
between type identifiers, which act as nonterminals in a tree grammar, and
XML tags, which form the labels of the tree.
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Trcp = recipe[Tingrs, Tproc]

Tingrs = ingredients[Tingr*]

Tingr = ingredient[String]

Tproc = procedure[String | Te]

Te = emph[String]

Fig. 6. An XML type in XDuce. The type corresponds to the DTD in Fig. 5

3.3 XML Schema

XML Schema is an elaborate schema notation recently developed and ap-
proved by the W3C. The primer [34] is a readable introduction to the com-
plex specification “XML Schema Part 1: Structures” [80] — that concerns tree
structure — and the less controversial “XML Schema Part 2: Datatypes” [10]
— that deals with string types such as used in attribute values and in char-
acter data.

Like other recent schema proposals, XML Schema separates tags from
types. Its type system is much more complicated than that of its competitors
because of a number of apparently overlapping mechanisms for solving the
problem of extending and reusing types. In particular, there is an object-
oriented mechanism for derivation by extension, another one for redefinition,
and a third one for substitution of elements. Additionally, a great number of
concepts have been introduced to restrict the uses of these mechanisms; in
this way XML Schema has become an extraordinarily complex notation.

Even so, the expressive power of XML Schema is less than simpler no-
tations such as Xduce. For example, XML Schema stipulates that if some
element has two children with the same tag, then, those children have the
same type.

Fortunately, the core of XML Schema is rather straightforward. Given
its growing significance, we illustrate its use in Fig. 7. We note that the
syntax of XML Schema is itself XML. This is why the specification becomes
voluminous, although the only added information over the earlier DTD is the
specification of the kinds of strings that may occur in the estimated-time

and unit attributes of the recipe element. The schema uses namespaces to
distinguish names that pertain to the metalanguage itself — those names
that occur without a prefix — and names that pertain to the XML language
being defined — those names that occur with an r: prefix.

Despite, or perhaps because of, the detailed and voluminous semantic
explanations of the structural part of XML Schema [79], there is no formal
semantics for the specification. In contrast, RELAX NG is easily described
mathematically; that is the approach to defining the language in [25]. Re-
searchers have made some headway in interpreting XML Schema [75].
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<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:r="http://www.recipes-are-us.com/recipe-schem a"

targetNamespace="http://www.recipes-are-us.com/reci pe-schema">

<simpleType name="unitType">

<restriction base="string">

<enumeration value="h"/>

<enumeration value="m"/>

</restriction>

</simpleType>

<element name="recipe">

<complexType>

<sequence>

<element ref="r:ingredients"/>

<element ref="r:procedure"/>

</sequence>

<attribute name="name" type="string"/>

<attribute name="estimated-time" type="float"/>

<attribute name="unit" type="r:unitType"/>

</complexType>

</element>

<element name="ingredients">

<complexType>

<sequence>

<element ref="r:ingredient" maxOccurs="unbounded" minO ccurs="0"/>

</sequence>

</complexType>

</element>

<element name="ingredient" type="string"/>

<element name="procedure">

<complexType mixed="true">

<sequence>

<element ref="r:emph" maxOccurs="unbounded" minOccurs= "0"/>

</sequence>

</complexType>

</element>

<element name="emph">

<complexType mixed="true">

<sequence>

<element ref="r:emph" maxOccurs="unbounded" minOccurs= "0"/>

</sequence>

</complexType>

</element>

</schema>

Fig. 7. An XML Schema for recipes



16 Nils Klarlund, Thomas Schwentick, and Dan Suicu

3.4 Schema Design Choices

One can make several choices in defining XML schemas, and the debate
about which ones to make still rages. We discuss here a few of them along
with some alternatives to XML Schema. For a detailed comparison of XML
schema languages, see [54]

Regular Expressions versus Boolean Logic Schema notations tend to
describe attributes in less sophisticated ways than content (the sequence of
children of a node). Whereas content descriptions rely on regular expressions,
indicating potentially nontrivial relationships between elements, attribute de-
scriptions allow no dependencies at all. This is a curious state of affairs be-
cause there are often strong relationships among attributes themselves and
among attributes and content. Even the XML Schema notation has many
such dependencies — none of which can be described in the language itself.
This is not a satisfactory state of affairs.

The problem has been addressed by RELAX NG [25], which generalizes
regular expressions on elements to include also attributes. Regular expres-
sions are easy to explain, probably easier than propositional logic, so this
choice is interesting philosophically and technically. The DSD notation [53]
tackles the problem by tying Boolean logic about attributes to regular ex-
pressions on content. Finally, it has been suggested that schema notations
be founded on Boolean logic plus counting; in [13], the motivation is rooted
in complexity considerations about the type checking of the plug operation
(defined in Sect. 5).

Context Dependencies DTDs associate a regular expression with each
element name. Consequently, the allowed content of an element is the same,
wherever it is used in a document. For example, it is impossible to define a
DTD where a title element under employee has a structure different from
a title element under book. This is possible, however, if one separates tags
from types as illustrated in the following example, using the XDuce notation
for types:

Tr = things[(Te|Tb)*]

Te = employee(EmpTitle, Age)

Tb = book(BookTitle, Authors)

EmpTitle = title(First, Last)

BookTitle = title(String)

...

In these type definitions, EmpTitle and BookTitle are types with the same
tag, namely title, but they have different contents: an EmpTitle contains
a First subelement followed by a Last subelement, whereas a BookTitle

contains a string. Furthermore, an employee element contains a title with
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the first kind of content, whereas a book element contains a title with the
second kind of content. This cannot be expressed in a DTD because there
we need to specify the content of title regardless of the context where it
occurs.

The essence of the this solution is to allow the type of an element to de-
pend on the context path — its sequence of ancestors. But a philosophical
and practical problem with the tree grammar approach is that it introduces
a set of concepts, namely, all of the type names, outside of the vocabulary
of the XML documents themselves. This is somewhat at odds with the self-
describability of XML because the node labels are no longer sufficient to
describe the type of information. In fact, the types are implicit — computed
from the grammar. Schema notations that completely avoid grammar con-
cepts have been suggested, such as Schematron [49], a kind of constraint
notation, and Assertion Grammars [71], which substitute types for expres-
sions characterizing context paths.

Is a Type Ordained from Above or a Solution to Equations? The
type equations of the previous example suggest that types are determined in a
top-down manner and are a function of context paths alone. This is the view
taken by most schema languages. But there is an alternative reading that
allow equations to be nondeterministic characterizations of the whole tree: a
document is typeable if and only if it is possible to find a type assignment to
each node such that all the equations are satisfied. In this way, types acquire
a semantics of tree automata on XML documents — which we explain in
Sect. 5. Theoretically appealing, this semantics seem to be difficult to explain
to practitioners. Currently only one schema language, RELAX NG has taken
this approach.

To Default or Not to Default DTDs are not only descriptions of valid
documents; they transform documents by inserting default and eliminating
text nodes in a process known as schema augmentation. Most other schema
languages are similar: they are both descriptive and transformational lan-
guages at the same time. Moreover, a schema in reality defines two XML
languages: (a) the language of documents that turn into augmented docu-
ments through schema processing and (b) the language of such augmented
documents. The argument for augmentation is that schema defaults are in-
herently linked to the usage of XML, so that defaults must be described along
with the grammar. Ideally, a notation for XML documents would define (a)
and (b) in terms of a logic or grammar notation that would also have an op-
erational meaning of augmentation. No satisfactory solution to this problem
has been found; for example, DSDs offer expressive, default insertion mecha-
nisms inspired by [12], but their semantics are intricately tied to operational
steps of parsing.
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Closed World versus Open World Assumption Schema languages
mostly follow the tradition of programming languages: everything that is not
explicitly specified as allowed must not occur. This closed world assumption
is fundamentally at odds with the extensibility assumption of XML. Schema
languages offer technical escape hatches, such as allowing any content in cer-
tain cases (but that disallows specifying any further properties of content)
or allowing any content in foreign namespaces. Schematron relies on an open
world assumption.

4 Programming and Querying XML

When it is internal to an application, XML data are often converted into
DOM (see Sect. 2.2) and accessed via a standard API, in Java or C++. Not
surprisingly, the graph-oriented DOM notation is not easy to work with. Ad-
ditionally, XML data are sometimes external: it may be too large to fit in
main memory (e.g. a database), it may be on a remote location, or it may
be constructed on the fly, by some other application. So, there are impor-
tant reasons for formulating specialized languages for exploring and querying
XML. There are three important such languages defined by the W3C: XPath,
XQuery, and XSLT.

4.1 XPath

The XPath language [23] defines expressions for navigating through an XML
document, much like file path expressions for accessing Unix directories.
XPath is intended to be a simple language, used as building block in more
complex languages such as XQuery, XSLT, and XPointer.

We illustrate XPath through examples. Referring again to the XML data
in Fig. 1, the XPath expresssion:

/recipe/procedure/em

returns the node n20 of Fig. 2, that is, the one represented by:

<em>vigorously</em>

Digging down a little deeper below the em node, we can select the text child
n21, using text():

/recipe/procedure/em/text()

returns the string:

"vigorously"

In general, an expression returns a sequence of nodes: all nodes matching the
expression, ordered according to document order. The XPath expression:
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/recipe/ingredients/ingredient

returns the sequence n6, n10, n14 of nodes represented by:

<ingredient quantity="200" unit="g" name="flour"/>

<ingredient quantity="100" unit="g" name="sugar"/>

<ingredient quantity="2" unit="dl" name="milk"/>

To select attribute values, one prefixes attribute names with @, like in:

/recipe/ingredients/ingredient/@name

which returns:

"flour", "sugar", "milk"

Thus XPath expressions may also evaluate to sequences of strings (as well as
numbers; in fact, XPath offers various traditional value manipulations that
fall outside the scope of this chapter).

An element or attribute reference, like ingredient or @name is called
a node test. Other node tests are: * which matches any element node, @*
which matches any attribute node, text() which matches any text node,
and node() which matches any node. The / operator retrieves any child of
its left operand and is called a navigation step. The other navigation step
that we discuss here is // which retrieves any descendant. The descendant
navigation step is a restricted form of a Kleene closure2. When no left operand
is present for either / or // then it is assumed to be the root node, which we
denoted d in Def. 1. For example the XPath expression:

//ingredient/description//time/*/text()

starts by following an arbitrariy chain from the root until it finds a node
labeled ingredient, then fetches its description children, then finds their
time descendants, then retrieves all their element children, and finally returns
their text values.

So far we have illustrated only linear XPath expressions that uncondi-
tionally navigate down in the XML tree. Filters, sometimes called predicates,
allow side conditions, making XPath expressions look like patterns. An ex-
ample is:

//ingredient[manufacturer/address]/description/

time[@timezone]/text()

The conditions enclosed in [...] are the filters. The meaning of this whole
expression is obtained in two steps. First, remove the filters to obtain a linear
XPath expressions:

//ingredient/description/time/text()

2 At the time of writing there is no general Kleene closure in the XPath standard.
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This defines a set of nodes which in turn induces a set of paths in the
XML tree. Second, retain only those paths for which the ingredient node
satisfies the [manufacturer/address] condition (i.e., it has at least one
manufacturer child, with a address child) and for which the time node
satisfies the [@timezone] condition, i.e., it has such an attribute.

In practice filters are usually used to compare values, like in:

//ingredient[manufacturer/address/zip="12345"]/

description/time[@timezone="EST"]/text()

The examples illustrated so far are absolute XPath expressions, in that
they start at the root.

When used in other languages, XPath expressions may be relative, i.e.,
they may start at any node in the document, called the context node. The
context node is specified by the application. In that case they are not prefixed
with / or //. For example:

ingredient[@quantity="200"]/time

checks whether the context node is an ingredient node, and whether it has
a @quantity attribute with value 200, then returns its time child.

Figure 8 summarizes some of the features of the XPath language.

ingredient matches an ingredient element
* matches any element
/ matches the root
/recipe matches a recipe element at the root
recipe/ingredients matches a ingredients node

having a recipe parent
recipe//time matches a time node

following a recipe at any depth
//time matches a time at any depth
time | place matches a time or a place

@quantity matches a quantity attribute
ingredient[@quantity="200"] the @unit attribute of an ingredient node

/@unit with some quantity attribute equal to 200

Fig. 8. Main features in XPath

Related Work In [31], a subclass of XPath expressions called simple is
defined to shed light on decidability of containment and integrity constraints –
the latter being logical statements in a restricted first-order logic. We mention
more work on path constraints in Sect. 5.
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4.2 XQuery

Large amounts of XML data stored on a data server is best accessed through
an XML query language such as XQuery [11], currently being designed by the
W3C. XQuery extends XPath with collection-oriented features: joins, union,
and nested queries. The basic construct of XQuery is for-let-where-return,
abbreviated FLWR and pronounced flower. Here is a simple example of a
FLWR expression:

for $x in /recipe/instructions/instruction

where $x/@quantity > 50

return <specialIngredient> <quant> { $x/@quantity } </quant>

<name> { $x/@name } </name>

</specialIngredient>

The query binds the variable $x to each instruction element, and for
each binding where the quantity attribute is > 50 constructs a special-

Ingredient element with two subelements, quant and name. For the XML
data in Fig. 1, the result is:

<specialIngredient>

<quant>200</quant>

<name>flour</name>

</specialIngredient>

<specialIngredient>

<quant>100</quant>

<name>sugar</name>

</specialIngredient>

XQuery is primarily intended for database applications, and joins are an
essential feature. The following query illustrates a join, by retrieving the
ingredient’s price, from a different part of the XML document:

for $x in /recipe/instructions/instruction,

$y in /recipe/products/product

where $x/@name = $y/description/name/text()

return <cost> <name> { $x/@name } </name>

<quant> { $x/@quantity } </quant>

<price> { $y/price/text() } </price>

</cost>

Often the XML data is not stored natively as XML, but is constructed on-
the-fly from other data sources, usually from a relational database. Then
XQuery expressions are translated into another language, instead of being
executed directly. For example, the query above may be translated into a
SQL query like the following (the exact SQL expression depends, of course,
on the schema of the underlying relational database):

select x.name, x.quantity, y.price

from instruction x, product y

where x.name = y.name
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Related Work The question of using relational technology to store and
process XML data is a very complex one. Several storage techniques have
been proposed [73,40,30,83]. Query translation is discussed in [38,22,74,37]; a
full translation of XQuery into SQL is described in [36]. One subtle issue that
arises in representing XML data in relational databases is that the former
has an ordered while the latter an unordered data model: this is addressed
in [78]. A more recent overview of storage techniques can be found in [5].

4.3 XSLT

The initial goal of XSLT (eXtensible Style Language Transformations ) [24]
was to serve as a stylesheet language that converts XML to a formatting
language, such as HTML, in order to be displayed by a browser. Since then,
it has evolved into a rich language for transforming XML data to XML data.
The main paradigm used in XSLT is that of a recursive function. With XSLT,
the intuition is that of “walking the tree”: one traverses the tree recursively
and does some action at each node. Note that with XPath, one can also
traverse the tree with //, but no action is done until the destination node is
found. The following XSLT example illustrates the point. It copies an entire
XML tree and replaces every <em> tag with a <bf> tag:

<xsl:template match="em">

<bf> <xsl:value-of/> </bf>

</xsl:template>

<xsl:template match="*">

<xsl:element>

<xsl:apply-templates/>

</xsl:element>

</xsl:template>

This XSLT program consists of two template rules (in general there can
be arbitrarily many). Each template rule has a match pattern and a template.
Consider the first rule. The match pattern is em: this is an XPath expressions
matching an <em> tag (in general, it can be any XPath expression). The
template is:

<bf> <xsl:value-of/> </bf>

Here <bf> and </bf> are programmer defined tags, while the element
<xsl:value-of/> stands for an XSLT function. In general, the template con-
sists of an arbitrary XML fragment interleaving output elements with XSLT
functions. The meaning is the following. Whenever an input node matches
em, an output of the form <bf>...</bf> is constructed. We examine now the
content between the output tags: xsl:value-of is a predefined function in
XSLT returning the text value of the current node. In the output tree, this
text is made into a text node, which becomes the content of the bf element.
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Consider now the second rule. Here the match pattern is *, matching any
XML element, while the template is:

<xsl:element> <xsl:apply-templates/> </xsl:element>

The function xsl:element constructs a new element with the same tag as
the current node in the input XML document. The XSLT function xsl:apply-

templates calls the entire XSLT program recursively on each child of the cur-
rent node. In effect, this rule alone copies the entire XML tree, except for
attribute and text nodes: it copies the current element node, then calls the
program recursively on the element children, copying them too.

Note that there is a conflict between the two rules: an element named em

matches both templates. XSLT has a rather arcane set of rules for resolving
such conflicts. The main idea is that the most specific rule will be selected:
in our case the first rule.

The program in the example above acts like one recursive function that is
called on each node in the tree. In XSLT we can simulate multiple, mutually
recursive functions, using modes. A mode is a name given to a template rule,
and all template rules having the same mode form one function. The example
below illustrates this with a program that changes em to bf, but only directly
under instruction, and that leaves all other em unchanged.

<xsl:template match="em" mode="f">

<bf> <xsl:value-of/> </bf>

</xsl:template>

<xsl:template match="*" mode="f">

<xsl:element> <xsl:apply-templates/> </xsl:element>

</xsl:template>

<xsl:template match="instruction">

<xsl:element> <xsl:apply-templates mode="f"/> </xsl:el ement>

</xsl:template>

<xsl:template match="*">

<xsl:element> <xsl:apply-templates/> </xsl:element>

</xsl:template>

As before the document is copied recursively, starting from the root. When
an instruction is reached, then the copying continues, but in the f mode.
The em tag is changed to the bf tag only in the f mode.

Related Work The reference [82] provides a formal model of XPath and
XSLT pattern matching, whereas [9,58] discuss the meaning and expressive
power of XSLT from a complexity theoretic point of view.
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5 The Theory of Regular Tree Languages

Central to both XML schemas and query notations, regular tree languages
are generalizations of elementary concepts in computer science. We review
these languages here emphasizing their automata-theoretic origin and their
connection to monadic second order logic.

Regular tree languages are defined over trees that have labels but no
values, i.e., they are subsets of TΣ rather than TΣ,D. Recall from Sec. 2.2
that we have a canonical “forgetful” function TΣ,D → TΣ , hence any subset
of TΣ implicitly defines a subset of TΣ,D, namely, its preimage under the
forgetful function.

Our definitions proceed from the case of ranked trees, where each label is
associated with a fixed number of children.

Definition 2. Let Σ be a finite, ranked alphabet: that is, Σ is partitioned
into disjoint sets, Σ = Σ0 ∪Σ1 ∪ . . . ∪Σk, where the symbols in Σr are said
to have rank r, for r = 0, . . . , k. A tree automaton over Σ is A = (Σ,Q, F, δ)
where Q is a finite set of states, F ⊆ Q is the set of final states and δ ⊆⋃

i=0,k Q×Σi ×Qi.

Given a tree automaton A and a tree t ∈ TΣ , a computation proceeds
bottom-up, by assigning a state to each tree node. Whenever a node labeled
a ∈ Σi has i children, for some i = 0, . . . , k, which have been assigned states
q1, . . . , qi, then we can assign state q to that node if (q, a, q1, . . . , qi) ∈ δ. Note
that this definition also covers the case of a leaf node, which is labeled with
an a ∈ Σ0. This assignment is a nondeterministic process, i.e., at each step
we may choose between several states q that can be assigned. A accepts t if
we can assign a final state q ∈ F to the root node. A regular tree language is
a subset of TΣ that is accepted by some tree automaton A.

A technical issue that arises in adopting the notion of regular tree lan-
guages to XML is that the XML trees are unranked (see Def. 1) while Def. 2
requires that the alphabet Σ be ranked.

There are two ways to circumvent that XML trees are unranked, and
they turn out to be equivalent. The first way is to encode unranked trees as
ranked binary trees [70]: an unranked regular tree language is then defined
to be the preimage of a (ranked) regular tree language under this encoding.
There are several natural ways to encode unranked trees as ranked trees, but
the definition is robust with respect to the particular choice of the encoding.
The second way is to generalize tree automata to unranked trees. To do so,
note that δ of Def. 2 can be viewed as a function δ : Q×Σ → 2Q∗

. Now, given
an unranked alphabet Σ, define a tree automaton for unranked if trees to be
A = (Σ,Q, F, δ) where Q,F are as in Definition 2 while δ : Q × Σ → 2Q∗

is such that for any q and a, the set δ(q, a) is a regular language over the
alphabet Q [15]. The state assignment again proceeds bottom-up: whenever
a node labeled a ∈ Σ has k children that have been assigned states q =
q1, . . . , qk, we may assign state q to that node provided that q ∈ δ(q, a). The
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automaton accepts the tree if we can assign a state q ∈ F to the root node.
An unranked regular tree language is defined to be a set of unranked trees
accepted by an unranked tree automaton.

As in the case of ranked automata it is possible to convert every tree au-
tomaton into a deterministic tree automaton, i.e., where the following prop-
erty holds: for all q and a there is a unique q such that q ∈ δ(q, a). It can be
seen that the usual subset construction can be generalized to trees such that
this property can be assumed to hold.

The Logic-automaton Connection An alternative way to define prop-
erties on trees, including regular tree languages, is based on logic. For that
purpose, we view a tree t ∈ TΣ as a finite structure, which is exposed through
unary predicates a(x), for a ∈ Σ, where a(x) holds if and only if λ(x) = a,
a binary document order predicate <, and a binary child(x, y) predicate,
which holds if and only if y is a child of x. The first order (FO) logic on
trees allows us to express first order formulas over such structures by quanti-
fying over nodes in the tree. The monadic-second-order (MSO) logic of such
structures adds second-order variables interpreted as sets of nodes, along
with quantification over these variables. Given a formula ϕ in FO or in MSO
and a tree t ∈ TΣ , we denote t |= ϕ if the formula ϕ is true in the struc-
ture corresponding to t. The following is an adaptation of a classic result on
the connection between regular languages and monadic second order logic,
see [27]:

Theorem 1. Let Σ be a finite (unranked) alphabet. Then a set L ⊆ TΣ is a
regular tree language if and only if there exists an MSO formula ϕ such that
L = {t | t |= ϕ}.

As a consequence, the MSO logic of XML trees is decidable: to test if a
formula ϕ is satisfiable in some model one first constructs the tree automaton
A that accepts the set {t | t |= ϕ} then tests if A accepts at least some tree
(by a kind of accessibility test).

The proof of the Theorem shows that tree automata can represent the
set of satisfying interpretations for any subformula. The basic idea is to aug-
ment the alphabet with binary components, one for each second-order vari-
able. (First-order variables are treated as singleton second-order variables.)
In this way, an extended label can record the membership status – true or
false – for each variable at a position. Thus, a labeled tree now represents
both the original labels and an interpretation of the second-order variables.
Then, tree automata that recognize the sets of satisfying interpretation can
be constructed using a simple induction on formulas. For example, conjunc-
tion corresponds to product of automata and the existential quantification
corresponds to the construction of a nondeterministic automaton, followed
by determinization.
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The Plug Operation and Minimal Automata Finally, if we define a
pointed tree ρ to be a tree over Σ except that one leaf is labeled •, then we
may compose ρ with any tree τ by replacing the leaf labeled • with τ . This
plug operation defines a tree denoted ρ · τ . It is now not hard to show that
the relation ≈L defined by τ ≈L τ ′ ⇔ (∀ρ : ρ · τ ∈ L ⇔ ρ · τ ′ ∈ L) is
an equivalence relation of finite index. In fact, it is a congruence relation: if
τi ≈L τ ′i , 1 ≤ i ≤ k, then a(τ1, . . . , τk) ≈L a(τ ′

1
, . . . , τ ′k), where a(τ1, . . . , τk)

here means the tree that has a root labeled a with k children being the
roots of the τis. Moreover, it is possible for each a ∈ Σ to define in a natural
way an equivalence relation on sequences of equivalence classes corresponding
to the transition relation. The details of how constructions lead to minimal
automata are provided in [15].

Uses of Tree Automata With tree languages essentially behaving as nicely
as conventional regular languages, it is not surprising that they have found use
in the study of program analysis, see e.g. [50]. Recently, it is also shown to be
feasible to use tree automata calculations according to the logic-automaton
connection in practice [51]. Tree grammars are increasingly being used in
implementations of program analysis [55] and for type inference in program-
ming languages that allow a plug operation [13]. Thus, the investigation of
tree automata and grammars holds considerable promise.

Regular Tree Languages and XML types A regular tree language L ⊆
TΣ can be thought of as an XML type. Recall from Sect. 3 that an XDuce
type consists of a set of type definitions: each definition has a type variable on
the left hand side, and a tag followed by a regular expression on type variables
on the right hand side. Since δ(q, a) in the definition of the tree automaton is
a regular language, it is not hard to see that the XDuce content specifications
are nothing but a syntax for regular expressions defining such languages. In
other words, XDuce types and regular tree languages are equivalent. As a
consequence every DTD, and every XSchema defines a regular tree language,
but it can be shown that both these formalisms are strictly less expressive
than regular tree languages: for example, neither can specify the set of all
trees that contains at least one node – anywhere in the tree – labeled a. The
reason is that the type system of these notations are entirely controlled by
context paths, see Sect. 3.4. An exception is RELAX NG, which expresses
exactly the class of regular tree languages.

Related Work More topics about automata, logic, and XML are discussed
in the survey [35]. A general introduction to tree automata can be found in
[27].
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6 XML Query Languages vs. Automata and Logic

Languages for querying and transforming XML trees occur critically in ap-
plications such as XML data exchange and native XML data processing. In
data exchange we often need to transform an XML document conforming
to one schema into another document, representing the same information
but represented according to a different schema. This is needed, for example,
when XML data crosses organization boundaries. The core of a native XML
engine consists of a query processor, which needs to optimize and execute
queries over the XML data, much like a relational database query processor.
We discuss here some of the theoretical investigations into the foundations
of XML querying and transformation formalisms.

In Sect. 5 we already saw the close correspondence between types of XML
documents on the one side and automata and logic on the other side. Besides
this match there are two other well-known striking connections between query
mechanisms and logics that seem relevant in the context of XML querying:

• The core of the relational database query language SQL has the same ex-
pressive power as first-order logic. This fact has been intensively exploited
in the theory of relational databases.

• Regular expressions, which are frequently used for path navigation, e.g.,
in XPath, XQuery and XSLT, have the same expressive power as monadic-
second-order logic.

In this section, we consider the relationship between XML query and trans-
formation languages and corresponding logics and automata.

Why are we interested in this relationship? There are two main reasons:
we want to understand the expressive power of query languages and we want
to find methods for efficient query evaluation. The characterization of a query
language by a logic is the starting point for an understanding of its expressive
power. It facilitates the comparison with other languages, indicates possible
extensions and makes it possible to find out which queries can not be ex-
pressed. On the other hand, an equivalent automaton model gives rise to
efficient query evaluation (usually linear time in the size of the document)
and to static analysis of queries, e.g., whether a query ever produces a result
or whether the result set of one query is always contained in the result set of
an other query.

In practice, we never get an exact correspondence between an XML lan-
guage and a logic or an automata model. As in the case of SQL, the best we
can hope for is a match between the core of a language or between certain
features and corresponding logics and automata.

Research in this area can be roughly divided into two categories. One
focusses on existing features in XML languages, especially on regular path
expressions and studies them on trees as well as on graphs. We describe some
of this work in Sect. 6.1.
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The other category considers the more powerful MSO logic but restricts
attention to queries that refer only to the tree structure of XML documents,
ignoring links and comparisons between data values in different parts of a
tree. Results of this approach are presented in Sect. 6.2.

Sect. 6.3 presents in more detail results on a specific, important question:
the typechecking problem for XSLT transformations. The proofs of these
results make use of the correspondence between XML types and MSO logic
as well as of a characterization of XSLT transformations by a certain kind of
automata and in turn the description of their behaviour by MSO formulas.

6.1 Query formalisms based on regular path navigation

We first describe several kinds of query formalisms which are based on reg-
ular path expressions and their extensions. Then we consider corresponding
automata and logics.

Regular path expressions A regular path expression R is simply a regular
expression over labels. A path p from a node x to a node y matches a path
expression R if the sequence of labels on p is a string in the language over
labels defined by R; we also say that R holds on the path. Hence, R induces
a binary predicate, also denoted R, on nodes, namely the set of pairs (x, y)
for which R holds on the path from x to y. For example, the path expression

x chapter.(section|table)∗.figure y

defines a binary predicate that holds of any pair of nodes (x, y) that are con-
nected by a path whose labels spell a word in the regular language chapter.
(section|table)∗.figure. Sometimes one is interested in the case where x
is fixed to be the root; R then simply defines a set of nodes.

For most queries, the full power of regular expressions is not needed.
Some languages, e.g., the core of XPath as exemplified in Sect. 4, use only
a fragment of regular expressions: concatenation, union, a wildcard for a
single node with an arbitrary label, and a wildcard for an arbitrary sequence
of nodes with arbitrary labels. The latter two features are replacements for
the more powerful Kleene-star operator of regular expressions. Expressions
without this operator (but with negation instead) are called star-free and
have an interesting logical characterization. They exactly correspond to first-
order logic [59]. Through appropriate use, negation can actually express path
conditions that seem to require Kleene star at first sight, like the displayed
expression of the book example above. Nevertheless, this sophisticated use of
negation is not suitable for a user-friendly XML query language. Therefore, it
is an interesting question, whether there is a simpler kind of specification of
star-free conditions or whether there is another robust class of path conditions
below the first-order expressible that have a simple syntax.
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The path expressions we have seen so far can be either used to define a
set of nodes, if the first node is assumed to be the root, or to define a set
of pairs of nodes. In general, one might be interested to specify relations of
arbitrary arity. This can be easily obtained by combining path expressions
to form conjunctive queries. As an example, the query

q(x, y, z) = (root recipe · ingredients · ingredient w)AND

(w manufacturer · name x)AND

(w @quantity z)AND

(w description · name y)

selects all triples (x, y, z), where x is the name of the manufacturer of ingre-
dient y from which the quantity z is used [41,19].

A similar kind of tree-structured specification of patterns is possible with
filters in XPath expressions (cf. Sect. 4), although in this case the result is
only a set of nodes.

Regular path expressions on general graphs have been studied in a se-
ries of papers [17,21,18,20]. This work considers query evaluation and query
rewriting in the presence of views. In view-based query evaluation a target
query q is given by a regular path expression or a conjunction of such expres-
sions and the answers to other queries q1, . . . , qk, called views, are assumed
available. The goal is to compute an (as good as possible) answer to q by
using these views. In query rewriting the views are not given. Instead, the
goal is to find an expression which uses q1, . . . , qk and always gives a good
approximation for q. The cited papers investigate the complexity of these
problems. In some cases the algorithms are based on automata.

For tree-structured data, the path expressions we have just seen navigate
only along vertical paths that are oriented from the root to the leaves. It also
makes sense to consider horizontal regular expressions that allow navigation
along the children of a node. Of course, we we already know from Sect. 3
that DTDs specify the allowed content of a node as a regular expression.
This kind of horizontal navigation is also possible in XPath along so-called
sibling axes.

An alternative to the simultaneous imposition of separate regular expres-
sions is to use a single expression over an extended vocabulary of navigational
commands. Routing expressions [52] or the similar caterpillar expressions
[14] provide such commands for moving up, testing the label, and selecting
a child by moving down, left, or right. As an example the expression up ·
ingredients · ingredient describes, for each procedure element of a recipe
document the paths to the corresponding ingredients. The document order
relation can be formulated as a caterpillar expression, but cannot be formu-
lated as a conjunctive query.

Automata for path expressions Caterpillar expressions have an automata-
theoretic formulation as a tree-walk automaton , which is a finite-state ma-
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chine that visits one node of an input tree at a time. Upon reading the label
of the node, the automaton may nondeterministically – but according to its
transition table – decide to move up, move down to the first child, move left
(to a sibling), move right. Instead of moving, the automaton may test the
currently visited node for whether it is the first or last child or whether it has
children. Each such transition is accompanied by a state change according
to the transition table. By designating initial and final states, tree-walk au-
tomata represent binary relations, the same set as those defined by caterpillar
expressions.

A tree-walk automaton also represents a tree language: the set of trees
for which the automaton, started at the root, reaches an accepting state
somewhere. It is not difficult to see that deterministic as well as nondeter-
ministic tree-walk automata can be emulated by standard tree automata.
In the other direction, it would perhaps seem counter-intuitive if any tree
automaton could be emulated by a tree-walk automaton. Surprisingly, the
status of this problem is open. It is even unknown whether all regular tree
languages can be captured by deterministic tree-walk automata. As the power
of tree-walk automata seems to be relatively weak, several extensions have
been studied, e.g., with more than one head. One particular extended kind
of tree-walk automata, so-called pebble automata, is discussed in Sect. 6.3
below. Tree-walk automata are further studied in [32,33,66].

Logics and path expressions Since star-free path expressions can be ex-
pressed in first-order logic, which is closed under conjunction, they also indi-
rectly capture conjunctive queries over such expressions. But FO logic seems
to be the more serious candidate for being the logical foundation of XML
querying. We next mention some other logics that have been considered in
the literature.

In [7] several existential fragments of first-order logic are studied which
correspond to certain parts of the XPath language.

In [65] first-order logic is augmented by both vertical and horizontal reg-
ular expressions over formulas. E.g., an expression ϕψ∗ is true at a node if
its first child fulfils a formula ϕ and each of the remaining children fulfil ψ.

Although it remains open whether tree-walk automata are equivalent to
MSO logic, their expressive power can be characterized by natural logics.
The probably somewhat stronger model of pebble automata exactly corre-
sponds to FO logic augmented by the unary transitive closure operator (see
[69] for a reference). The latter expresses whether a pair of elements is in the
transitive closure of a (defined) binary relation. Deterministic and nondeter-
ministic tree-walk automata can be captured by formulas which consist of
one (deterministic or nondeterministic) transitive closure operator in front of
an FO formula (and a built-in depth predicate) [66].
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6.2 Query formalisms with the expressive power of

monadic-second-order logic

Next, we study formalisms that are equivalent to MSO logics. Recall that
equivalence between tree automata and MSO logic in Sect. 5 applies to recog-
nition of sets of trees, not to queries. It is a pleasing feature of logics, however,
that they can be easily adapted to express queries of arbitrary arity: to get a
k-ary query simply write a formula with k free first-order variables. We will
see soon, that the analogous step for automata is much more involved.

In this subsection, we first describe automata models, then we have a look
at other kinds of formalisms. Afterwards the complexity of evaluating queries
that have MSO power is considered.

Automata for MSO queries We saw in Sect. 5 how the definition of classi-
cal tree automata can be extended to handle the unranked trees representing
XML documents. It is straightforward to amend nondetermistic bottom-up
or top-down tree automata so that they compute unary queries; it suffices
to view the set of accepting states as those that select the nodes to be in-
cluded in the answer set. To get a deterministic model with MSO power, the
requirement that the automaton makes a single pass over the tree must be
dropped. In fact, the decision as to whether a node is selected may depend
on parts of the tree both below and above the node under consideration.

In [15], two-way deterministic tree automata were defined. At each point
of the computation the heads of such an automaton are placed along a cut of
the tree, i.e., a set of nodes that intersects each path from a leaf to the root
exactly once. In one step the automaton can move either from a node v to its
children or, if all children of v carry a head, up to v. The new states are defined
by means of regular languages as explained in Sect. 5. In [64], such automata
were extended by node selecting states to express unary queries. It turns out
that the resulting model is too weak to capture all MSO definable queries.
The obstacle is that not enough information information can be passed among
siblings. For instance, the simple query “select each ingredient node that is
the first such child for some parent” cannot be expressed. To bridge the gap,
query automata must be accessorized with stay-transitions. During such a
transition, a two-way string automaton with output transforms a sequence of
states of the children of a node v into a new sequence of states. Unreined, this
feature makes query automata too powerful (e.g., equivalent to linear space
bounded Turing machines on trees of depth 1). Therefore such transitions are
allowed only to be used a constant number of times per node v. Defined in
this fashion, query automata capture precisely the unary queries expressible
in MSO logic.

A different automata-based approach is taken by [63]. There a determin-
istic sequential automaton that traverses the tree twice, in document-order
and reverse document-order, is equipped with a pushdown store. Again this
model has the full expressive power of MSO logic.
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Other formalisms to express MSO queries Automata are not the only
operational models that have the same expressive power as MSO logic. We
mention two other approaches with the same expressive power. In [68], it
is shown how Boolean-attributed grammars over context-free grammars –
extended with regular expression operations as in DTDs – constitute a query
language. The other MSO-equivalent notation is that of monadic Datalog
programs [45]. These programs may be further restricted to a fragment that
is in an intuitive correspondence with a visual notation – while still being
MSO-equivalent. This fragment is used in the Lixto project [56] to represent
extraction rules for Web pages.

Complexity issues The data complexity of a query is the amount of re-
sources needed to evaluate it as a function of the size of the input data. For
most query languages, and indeed even for MSO logic with free first-order
variables, the data complexity is linear time. Such efficient evaluation can
be obtained from each of the operational models discussed above. In [42],
it is even shown that MSO queries with free second-order variables can be
evaluated in linear time data complexity (in the size of the structure and of
the output) on structures of bounded tree-width; in this case, the output is
a set of structures.

In all these results, however, the query is considered fixed and only the
XML document is viewed as input. This point of view is partly justified by
the assumption that the query itself is much smaller than the XML data. In
practice, it is often relevant to consider the query itself as part of the input.
This is the point of view of combined complexity, which better reflects the
actual query mechanism. Fortunately, for the operational models, the com-
plexity remains linear in both the query size and the size of the input. But
the picture changes drastically when the query is given as an MSO formula.
The obvious approach, to translate the formula into an automaton, yields a
non-elementary algorithm, see [27]. (A non-elementary function is one that
cannot be bounded by a fixed stack of exponentials.) In fact, each quanti-
fier alternation may increase the running time of such an algorithm by an
exponential.

In [43], it is shown that there is essentially no better way to evaluate
MSO formulas, if the time complexity has to be polynomial in the size of
the document. More precisely, unless P=NP, if an algorithm evaluates MSO
formulas ϕ on documents t in time O(f(|ϕ|)p(|t|)) with p a polynomial, then
f is non-elementary. The non-elementary complexity can be brought down to
exponential through syntactic restrictions on formulas without losing any ex-
pressive power (but the formulas may have to be non-elementary bigger) [65].

On the other hand, a straightforward evaluation strategy based on struc-
tural induction (and without using automata) also has exponential time com-
plexity, but works in polynomial space. Actually, the combined complexity
problem is complete for PSPACE.
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6.3 The XML Typechecking Problem

Recall that an XML type is a regular tree language τ ⊆ TΣ . The XML
validation problem is: we are given a tree t ∈ TΣ and a type τ and we have
to decide whether t ∈ τ . For example, the tree in Fig. 2 is valid with respect
to the type recipe of Sect. 3.1. In the typechecking problem we are given a
program P , defining a function P : TΣ,D → TΣ′,D, two types τ ⊆ TΣ , τ

′ ⊆
TΣ′ , and need to decide whether ∀x ∈ τ , P (x) ∈ τ ′. Here and in the sequel the
notation x ∈ τ means that, after erasing the data values from x the resulting
tree is in τ ; similarly for P (x) ∈ τ ′.

An XML typechecker is needed in virtually any application where XML
documents are generated automatically, whether by a program or by a query.
One should think of the typechecker as a module which, upon analyzing the
program, the input type, and the output type, decides whether all documents
that can be produced by the program are valid, and returns yes or no ac-
cordingly. If the answer is no, then we would also like to know where in the
program typechecking failed. This however may be hard, because typecheck-
ing is a global property and it may be impossible to say which subexpression
caused the typechecker to fail.

A related problem is the type inference problem. Here, we are asked to
compute, for the given program P , the type P (τ) = {P (x) | x ∈ τ}. When
type inference is possible, we have a simple solution to the typechecking prob-
lem: given P, τ, τ ′, first compute P (τ), then check if P (τ) ⊆ τ ′. Early work
on typechecking document transformations [62], XDuce [48] and XQuery ap-
proach typechecking through type inference. However, type inference is usu-
ally impossible, because the set P (τ) is not a regular tree language. For
example, consider the XQuery program P below:

<result>

for $ in /doc/elm

return <a/>

for $ in /doc/elm

return <b/>

for $ in /doc/elm

return <c/>

</result>

On an input like:

<doc> <elm/> <elm/> ... <elm/> </doc>

with n occurrences of <elm>, it returns an output of the form:

<result>

<a/> ... <a/> <b/> ... <b/> <c/> ... <c/>

</result>
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with n a’s, n b’s, and n c’s. We say, in short, that on the input elmn it returns
the output an.bn.cn. Then, for a given input type τ that allows arbitrarily
large numbers of elm elements the output, P (τ) is not a regular language,
not even a context free one. Systems in practice usually approximate the in-
ferred output type to a set that is larger than P (τ). XQuery’s standard type
inference system would approximate the output type to a∗.b∗.c∗. Typecheck-
ing can still be attempted, but it may result in false negatives, i.e., to some
correct programs being rejected by the typechecker. For example, the reader
may check that the program above correctly typechecks with respect to the
input type:

<!ELEMENT doc (elm*)>

and the output type:

<!ELEMENT result ((a,a*,b,b*,c,c*)?)>

but the XQuery standard typechecker will fail to typecheck it, because a∗.b∗.c∗

6⊆ (ε | (a.a∗.b.b∗.c.c∗)). The only solution to such false negatives is to ask the
programmers to rewrite their programs in order to help the typechecker – a
rather serious annoyance in practice.

Another approach to typechecking is via inverse type inference. Here,
we are asked to compute, for a given program P and output type τ ′, the
type P−1(τ ′) = {x | P (x) ∈ τ ′}. As before, when inverse type inference is
possible then typechecking can be done as follows: given P, τ, τ ′, first com-
pute P−1(τ ′), then check if τ ⊆ P−1(τ ′). Surprisingly, inverse type infer-
ence is possible, for a large class of XML transformations discussed below.
For example, considering the program above, assume the output type to
be: τ ′ = {a2m.b3n.c5k | m ≥ 0, n ≥ 0, k ≥ 0}. This is indeed a regular lan-
guage, expressible as (a.a)∗.(b.b.b)∗.(c.c.c.c.c)∗. Consider now the inverse
type inference problem for the program P above: the reader may verify that
P−1(τ ′) = {elm30p | p ≥ 0}, which is a regular language (30 = 2× 3 × 5).

XML Transformations The class of XML transformations for which we
discuss inverse type inference and typechecking are k-pebble transducers
[61]. Like tree-walk automata these devices walk over the input tree in any
direction (up/down-left/down-right). There are two extensions to the tree
walk automata.

First, there are up to k heads (called pebbles) that are placed on the input
tree at any given time, and that can move independently. The number k ≥ 1
is a parameter of the transducer. The following restriction is imposed on the
pebbles’ movement: at any given time, only the highest ranked pebble can be
moved. To move a lower ranked pebble, the higher ranked pebble must first
be removed from the tree. This restriction still allows us to express nested
loops in a k pebble tree transducer, like:
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for x in nodes(t) do

for y in nodes(t) do

...

Here pebble x is the lower ranked, and when it advances the higher ranked
pebble y is taken from the tree (and, later, placed on the root). To see an
example of an operation that is ruled out by the restriction, consider an XML
document which is a list of a’s followed by a list of b’s, i.e., am.bn. Assume we
want to check whether m = n: we could do this with two pebbles iterating in
sync over the a, and over the b’s respectively. This would allow us to recognize
the language an.bn, which is not a regular language: the restriction, however,
prohibits us from doing so.

Second, k-pebble tree transducers produce an output tree, rather than
just accepting or rejecting a tree. For that they allow a new kind of tran-
sition called an output transition. Here an output node is produced in the
output tree, and a fresh copy of the k-pebble transducer is created for each
child of that node. These copies run in parallel, without communication, and
compute the subtrees of the output node. They all start in the same config-
uration inherited from the original transducer (i.e., the same placement of
the pebbles) except for the initial state, which depends on the rank of the
child. To see a simple example, the following 1-pebble transducer copies a
binary input tree to the output tree. It has three states, q0, q1, q2. In state q0
it produces an output node, with the same label as the current input node,
and with two children: the transducers for those children are initialized in
states q1 and q2 respectively. In state q1 it moves the current pebble to the
left child and enters state q0. In state q2 it moves the current pebble to the
right child and enters state q0.

k-pebble tree transducers can express an important fragment of XSLT
that includes recursive traversal of the input tree and the use of variables
and parameters. However, it cannot express joins, i.e., the data values of two
parameters cannot be compared for equality.

In summary, k-pebble transducers can express transformations consisting
of one or several recursive traversals of the input tree, like in XSLT, but
cannot express joins, like in XQuery. Then the following holds:

Theorem 2. [61] For any k-pebble tree transducer P and any regular tree
language τ , P−1(τ) is also a regular tree language. In consequence the type-
checking for k-pebble tree transducers is decidable: given P, τ, τ ′, it is possible
to decide whether ∀x ∈ τ, P (x) ∈ τ ′.

The algorithm resulting from the proof in [61] is very inefficient (hyper-
exponential). A more efficient algorithm (exponential) for a certain fragment
of XSLT is described in [81].

The restrictions on the k-pebble transducer cannot be lifted without com-
promising Theorem 2. If one allows all pebbles placed on the tree to move
in parallel, then one can check if the input is of the form an.bn, by moving
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one pebble over the a’s synchronously with another pebble over the b’s: this
suffices to construct a transducer P for which P−1(τ ′) is not regular.

More important for practical applications is the fact that one cannot
lift the restriction on data values. We explain this in more detail. Recall
that XQuery can express joins by checking equality conditions between data
values. It is easy to extend k-pebble transducers in the same way: they are
now allowed to check if ν(x) = ν(y), for two nodes x and y pointed to by
two different pebbles. Call such a machine a k-pebble transducer with data
values. Now the k-pebble transducer really defines a function TΣ,D → TΣ′,D,
in that the shape of the output tree and its labels depend on the data values
in the input tree. To see such an example, consider the function which copies
the input tree if all data values occurring in the tree are distinct, and returns
an empty tree otherwise. Unfortunately, typechecking becomes undecidable
in this case:

Theorem 3. [61,77] The following problem is undecidable. Given a k-pebble
tree transducer with data values, P , and two regular tree languages τ, τ ′,
decide whether P typechecks w.r.t. τ and τ ′: ∀x ∈ τ.P (x) ∈ τ ′.

This in itself does not answer the question whether typechecking is decid-
able for the non-recursive fragment of XQuery, consisting of (possibly nested)
FLWR expressions, because k-pebble transducers allow complex traversal of
the input tree, that is not expressible with simple FLWR expressions. This
question is settled in [3] which essentially showed that typechecking is here
undecidable. It does become decidable, however, if one further imposes re-
strictions on the query language or the output type.

7 Conclusion

We have described XML formalisms that have logic foundations and that are
emerging as cornerstones of new Internet-driven technology: schemas, query
languages, and type checking.

This chapter has had to omit many more advanced developments. For
example, XML under constraints is an area that span formalisms for speci-
fying XML keys [16], the satisfiability problem for a set of constraints [35],
and constraints for the purpose of storing and querying XML data that is
redundantly stored and indexed in relational format [2]. Other research has
addressed the XPath query containment problem [67,60], structural proper-
ties of XPath [7], the XML tree encoding problem (how to efficiently represent
relations among nodes) [1,4,26], the XML normalization problem [6], XML
stream processing [72], alternative definitions of regular tree languages [57,8],
and monadic queries over XML [46].

Thanks to the explosion of XML-related research, these references are just
to be construed as a sampling of current directions. Much work remains to
be done.
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