
Word n-grams for cluster keyboards

Nils Klarlund
klarlund@research.att.com

AT&T Labs–Research
180 Park Avenue

Florham Park, NJ 07932

Michael Riley
riley@research.att.com

AT&T Labs–Research
180 Park Avenue

Florham Park, NJ 07932

Abstract

A cluster keyboardpartitions the letters
of the alphabet onto subset keys. On
such keyboards most words are typed
with no more key presses than on the
standard keyboard, but a key sequence
may stand for two or more words. In
current practice, this ambiguity problem
is addressed by hypothesizing words ac-
cording to their unigram (occurrence)
frequency. When the hypothesized word
is not the intended one, an error arises.

In this paper, we study the effect of de-
ploying large,n-gram language models
used in speech recognition for improv-
ing the error rate. We use the North
American Business News (NAB) cor-
pus, which contains hundreds of mil-
lions of words.

We report on results for the telephone
keypad and for cluster keyboards with
5, 8, 10, and 14 keys based on the
QWERTY layout. Despite our assump-
tion that a word hypothesis must be dis-
played promptly, we show that the error
rate can be reduced to up to one-fourth
of the rate of the unigram method.

1 Introduction

The text entry methods T9 (by Tegic) and iTap
(by Motorola) are found on many mobile phones.
They are based on the existing clustering of letters
on the eight digit keys 2 to 9 as found on standard
telephones in the USA and elsewhere. Other lay-
outs may be based on QWERTY such at the one
we propose in Fig. 1, where typing the key marked
{Q,W} produces eitherq or w. To type on these

Figure 1: Q14: a familiar layout, but with ambigu-
ous keys. Up to 99.5% of all words entered will be
correctly identified through techniques developed
in this paper.

devices, the user presses the key corresponding to
the letter only once. When the key corresponding
to the spacebar is pressed, a dictionary is consulted
to find the word corresponding to the sequence of
digit keys. If there are such several words, called
homographsof the cluster layout, then the most
likely one is suggested according to its occurrence
frequency as calculated over some corpus. If the
suggestion is wrong, then the user must explicitly
choose a word from a list of alternatives.

If the correct word is not among the alternatives,
the user may enter the word using an alternative
method. For example, the multi-tap method re-
quires that the cluster key be pressed repeatedly
until the correct letter appears. (Heuristics may be
employed to hypothesize words that are not in the
vocabulary. We do not consider this aspect in the
present article.)

1.1 Error Rate and Human Performance

The overhead incurred by the user for validation of
a hypothesis is hard to quantify, see (Silfverberg
et al., 2000), where it is estimated that five per-

cent of words are hypothesized incorrectly (for T9
used to enter English). According to one model in
(Silfverberg et al., 2000), predicted performance
drops from 40 words per minute (wpm) to 25 wpm
if the user visually inspects every word as soon as
it is typed. Each inspection is assumed to add 500
milliseconds to the entry time of the word. Obvi-
ously, reducing the error rate will discourage vi-
sual inspection and improve efficiency since the
process will resemble traditional typing.

1.2 QWERTY-based Cluster Layouts

In addition to T9, at least one cluster key-
board based on QWERTY has been sug-
gested: thenon-keyboard QWERTYlayout (of
Visual Languages et al., 1999), where the
26 letters are grouped onto eight keys ac-
cording to {Q,A,Z}, {W,S, X}, {E,D,C},
{R,F, V, T,G,B}, {Y, H, N,U, J,M}, {I,K},
{O,L}, and{P}. Thus, letters serviced by the
same finger when touch typing are on the same
key in this layout, which we nameQ8. In (of Vi-
sual Languages et al., 1999), it is stated that 3.5%
of keyed input calls for correction when a simple
syntactic analysis is added to the frequency-based
disambiguation, but the texts for which this holds
are not detailed.

Since the mental map of the keyboard layout
remains the same, QWERTY based layouts may
help overcome user resistance to learning new typ-
ing techniques. We devise three other layouts,
having 5, 10 and 14 keys.

1.3 Our Approach and Results

In this paper, we show through simulations that
stochastic language models can be used in a real-
istic setting to significantly reduce the error rate
for typing on variety of cluster keyboards. Our
language models consist of probability estimates
of occurrences ofn-grams, sequences ofn con-
secutive words, wheren is 1 (unigramsor word
occurrences), 2 (bigrams), or 3 (trigrams). Cal-
culated from large corpora, these probabilities are
used to hypothesize the words typed. Forn = 1,
the technique amounts to selecting the most fre-
quent word. Forn > 1, the estimate of a word is
dependent on the pattern ofn-grams found in the
whole sentence.

The problem with this approach is that the anal-
ysis can take place only after the whole sentence
has been keyed. The telephone keypad study (Rau
and Skiena, 1996) follows this traditional whole-
sentence technique. The authors set up a human-
factors experiment based on this approach. The
feedback given to the users as they type is the se-

quence of keys entered. Only when users termi-
nate keying the sentence are the predicted words
displayed. The authors do not draw any con-
clusions about their usability study, but they do
note that typing discomfort increased with sen-
tence length.

Although the authors dismiss this problem, it
seems to us that their whole sentence analysis is
flawed as a practical approach. We are convinced
that the acceptance of cluster keyboards is con-
tingent on the computer almost always correctly
guessing the intended word very soon after it has
been keyed.

So, although we employ the same statistical
framework as in (Rau and Skiena, 1996), we
propose in this paper to use it differently, better
matching human expectations. As a starting point,
we assume that a beginning user will invariably
verify the hypothesized word as soon as is has
been keyed. To simplify our analysis, we assume
that guessing individual characters is not relevant
while the word is being typed. But as soon as a
word boundary is entered (such as a space) the
computer must produce the most likely word in
the dictionary that matches the sequence of keys.
In this case, we say that thedelayparameterd is
zero since the last hypothesis is committed imme-
diately.

Naturally, we expect that the performance of
this more realistic model would be inferior to that
of the whole sentence analysis. But with our re-
sults, we do answer in the positive the question
whether there is a significant improvement over
the unigram model.

To further investigate the usefulness of thed =
0 model, we stipulate that the cognitive load on
the user will be diminished if the following holds:
a correction of a wrongly guessed word can be ac-
complished through a single press on a single cor-
rection key. The effect of the correction key is to
replace the first hypothesis with the second. Thus,
we also study the model of a text entry system,
where the user’s action upon word entry is reduced
to a single choice: do nothing to select the pri-
mary word choice or select the secondary choice.
This technique will be of particular significance to
the beginning user. Therefore, we are interested
in calculating ford = 0, the top twocandidates
suggested by the language model.

We also study the improved hypotheses that
may be generated if the experienced user accepts
a delay before a hypothesis by the computer is
made final. Thus ford = 1, the hypothesis of the
second-to-last word may be updated when the last
word has been entered. Ford = 2, also the hy-
pothesis of the third-to-last word may be updated.

Finally, we summarize in plots the effects on ac-
curacy of increasing the vocabulary size and of
shrinking the models so that they demand less
memory and computation. Our simulations indi-
cate a linear relationship between the measured
log perplexity (i.e., cross-entropy) and the various
error rates we study.

Related Work
Already in 1948, in his famous paper that founded
information theory, C.E. Shannon studiedn-grams
(on letter sequences that could cross word bound-
aries) to understand the information-theoretic con-
tent of English. Later, speech recognition research
has focused on language models built in terms of
n-grams over words as the tokens.

This is also the view adopted in (Rau and
Skiena, 1996), which investigates the use of lan-
guage models for the telephone keypad. The key-
pad layout, which is not used any longer to our
knowledge, places the letters Q and Z on the “*”-
key. Rau and Skiena use bigrams to disambiguate
words, once a complete sentence has been keyed.

Then-gram model applied to characters within
words, but where word context is not considered,
has been studied in (Dunlop and Crossan, 2000;
Forcada, 2001). In this work, a user may type
with less than one keystroke per character thanks
to word completion techniques.

The perhaps most fascinating example of a
highly interactive system is that of Dasher (Ward
and MacKay, 2002), which uses contextual infor-
mation to predict individual characters and char-
acter intervals. The intervals are continuously dis-
played to the user in a branching structure.

The use of cluster keyboards are of particu-
lar interest to the development of input methods
for people whose typing skills are limited or ab-
sent. For example, reduced layouts, with changing
assignments of letters, are studied in (Kühn and
Garbe, 2001; Johansen and Hansen, 2002). Such
systems could be helpful to those who use gaze as
a means of input or to people whose motor skills
allow them to use only a very few number of keys.

The recent study of reduced keyboards in
(Tanaka-Ishii et al., 2002) is somewhat similar
to ours. As in the work of Dasher, the authors
use a PPM (prediction by partial match) language
model. This model merges information aboutn-
grams in a user corpus with unigram probabilities
from a base dictionary. The text that is entered
by the user is appended to the user corpus. As a
result, a dynamic language model emerges, but it
is able to predict the last word entered only. The
PPM study anticipates the use of a completion key
to speed up text entry. In contrast, we focus on

error rates for words that are entered in their en-
tirety. The authors conclude that a four-button de-
vice, where prediction is based on language mod-
els, is as efficient for text entry as a telephone key-
pad.

2 Framework

We describe here cluster keys, statistical methods,
and concepts pertaining to the notion of delay.

2.1 Technical Preliminaries

Our alphabetΣ is {a, . . . , z, ‘”, ‘-’, spc}. We con-
sider text entry for English. Words are separated
by space keys or punctuation symbols entered on
special keys. We do consider ‘” (as in “it’s”) and
‘-’ (as in “e-mailed”) as being clustered on a sep-
aratesymbol key. A particular implementation of
a cluster keyboard may instead map these charac-
ters to particular explicit key combinations. This
would improve our results (to an insignificant de-
gree). The ‘.’ key could be mapped to the sym-
bol key as well without affecting our results: no
words in our vocabulary end with a ‘” or ‘-’. We
do consider abbreviations, but we assume that they
are marked through the use of a period after each
letter keyed. Our results would be slightly better
(see Sect. 6) if we do not consider abbreviations.
For example, it is virtually impossible to guess
most initials of person names. Fortunately, none
of the keyboard layouts considered map “i” and
“a” to the same key. Thus, the two standard En-
glish words that consist of one character require
no disambiguation by the user.

2.2 From Training Sets to Prediction

The language models were built using 250 million
words from the North American Business News
(NAB) corpus, which was collected by DARPA
for use in speech recognition research and bench-
marking (Paul and Baker, 1992). It consists of
Wall Street Journal articles and similar publica-
tions. For testing, we used a held-out subset of
approximately 1 million words from that corpus
(the NAB LM development test set). To investi-
gate task portability, we also used approximately
17,000 words from the Switchboard corpus (Eval
’95 test set) (Godfrey et al., 1992). This corpus
consists of transcriptions of telephone conversa-
tions covering a variety of topics.

Given a vocabulary sizev, we identify thev
most frequent words from our training corpus and
build a lexiconL that maps each wordw to a nat-
ural numberι(w), which we call aword identifier
(ID). Given the desiredn-gram orderN , we build
a stochastic backoff language modelLM (Katz,

1987) from our corpus using a compact finite au-
tomata representation (Riccardi et al., 1995) as
very commonly used in large vocabulary speech
recognition systems. For any sequencei1, . . . , in
of word IDs, this model estimates the probabil-
ity that the corresponding sequence of words oc-
curs in the text as a sentence. Further, for a given
non-negative real numbers, we canshrink the
language model to factors using the method of
Seymore and Rosenfeld (Seymore and Rosenfeld,
1996) to trade-off the size of the language model
against its accuracy. Shrinking removes higher-
ordern-gram transitions that are similar in transi-
tion probability to their lower-order counterparts
and thus relatively expendable.

For each wordw in a given sentence from the
test set, let theI(w) be the set of word IDs corre-
sponding tow and its homographs, i.e., to the set
of words in the lexicon that would be mapped to
the same key sequence asw. If w is in the dic-
tionary, then its ID is guaranteed to be in the set,
i.e., ι(w) ∈ I(w). If w is not in the lexicon, it is
calledout-of-vocabulary. We consider that an er-
ror. The setI(w) may or may not be empty. If
I(w) is not empty, then the word guessing algo-
rithm will be able to suggest a word, albeit wrong.
The out-of-vocabulary situation is represented by
a specialunknown token(which also has a word ID
representation) that replaces the ID of the word.

Our algorithm hypothesizes words using the
automata-theoretic representation as follows.
Upon readingh keyed words of the sentence,
we calculate for the lastω words, the sets
Ih−ω+1, . . . , Ih, where Ik is the set of homo-
graphs in the lexicon that correspond to the
ambiguous representation of thekth word in the
sentence. We callω the window size. We do
not use the whole history for efficiency reasons.
And, we have informally verified that we lose no
precision in practice due to this decision. IfIk
as just specified is empty, we replace it by the
singleton consisting of the unknown token.

We are looking for the sequence of word IDs
ih−ω+1, . . . , ih that is most likely to be a prefix
of some sentence. To find this sequence, we first
make all states inLM final so that it will accept
any prefix of a sentence and not just complete sen-
tences. We then construct an automatonS that
recognizes all sequencesih−ω+1, . . . , ih such that
ik ∈ Ik for all h − w < k ≤ h. Next, we
compute the finite-state intersection ofS andLM,
which retains precisely those strings in common to
S andLM. The resulting automaton is a compact
representation of each word ID sequence compat-
ible with the Ihs and weighted by the stochas-
tic backoff model’s estimate of the probability of

that word sequence. Finally, we find the most
probable path in this automaton using the well-
known single-source shortest-path algorithm in di-
rected, acyclic graphs (labeled here with negative
log probabilities) (Cormen et al., 1992). The word
ID of the last transition is then the most likely
candidate for the last word typed. We use the
AT&T Finite-State Machine (FSM) Library for all
the finite-state representations and operations de-
scribed above (Mohri et al., 2000); FSM can be
downloaded for non-commercial use at (Mohri et
al., 1997).

2.3 Delays, Changes, and Bad Changes
We have just described how our algorithm works
for d = 0. For d = 1, we make a preliminary
estimatei for the kth word wk when h reaches
k according to thed = 0 strategy. Whenh be-
comesk +1, we again find the most probable path
as above. We read off the word IDi′ of the second
last transition. Ifi′ is noti, then we say that thekth
word hypothesischanged. Clearly, we are inter-
ested in measuring how often this happens, since
it is likely to distract the user. A particularly both-
ersome aspect of thed = 1 method is if the first
hypothesisi is correct, but the secondi′ is wrong.
We call this situation abad change. We are inter-
ested in measuring the ratio of bad changes to all
changes.

The case ofd = 2 is analogous tod = 1.

3 Cluster Keyboards

We have studied the standard telephone keypad
layout and four ways of squeezing the QWERTY
layout onto fewer keys.

Q14 This keyboard layout is obtained by pairing
adjacent keys. So the cluster keys are defined by
the partitioning{Q,W}, {E,R}, {T, Y }, {U, I},
{O,P}, {A,S}, {D,F}, {G, H}, {J,K}, {L},
{Z,X}, {C, V }, {B,N}, {M}. Thus this key-
board has 14 letter keys. The layout is shown in
Fig 1.

Q10 The Q10 layout is the result of merging
the three rows of letter keys. Thus, it corre-
sponds to the partitioning{Q,A,Z}, {W,S, X},
{E,D,C}, {R,F, V }, {T,G, B}, {Y, H, N},
{U, J,M}, {I,K}, {O,L}, {P}. It has 10 letter
keys.

Q8 Q8 is obtained from Q10 by merging the
four subsets that correspond to the middle of the
keyboard. The layout thus is determined by the
eight subsets{Q,A,Z}, {W,S, X}, {E,D,C},
{R,F, V, T,G, B}, {Y, H,N,U, J, M}, {I,K},
{O,L}, {P}.

Q5 Q5 is obtained from Q10 by overlaying the
right half onto the left half. Thus the partition-
ing is {Q,A,Z, Y,H,N}, {W,S, X, U, J, M},
{E,D,C, I,K}, {R,F, V,O,L}, {T,G, B, P},
which yields five keys.

T9 This is the with keyboard described in Sect.
1. For fairness, we note that the 9 in T9 refers to
the number of letter keys plus the spacebar key.
Thus, T9 is most interestingly compared to Q8.

4 Experimental Setup

As previously mentioned, we have used two test
sets: NAB, which consists of 54,265 sentences,
and Switchboard, which consists of 2,475 sen-
tences.

An example from NAB is: “in santa monica
california well known hedge fund manager mark
strome believes metals such as copper nickel and
aluminum are poised for dramatic price rises”.
Thus, this corpus approximates formal writing.

An example from the Switchboard set is: “i
don’t want to go through that i mean i’m i’m see-
ing someone now ”. Since this corpus stems from
transcribed spoken language, the text structure is
different from that of written language, even in-
formal writing. Also, there are very many in-
stances of hesitation and confirmation words that
do not occur as frequently in writing, among them
are “mhm’, “-hum”, “uh huh”, “uh-huh’, “-hum”,
“mm”, “oh”, “uh”, “um”, “ah”. To approximate
informal writing, we have removed these words
from our training sets.

We have used four different vocabulary sizes.
The biggest one consists of 463k words (different
inflected forms of the same word count as different
words). It consists of this complete set of words
found in the NAB corpus. We have also used vo-
cabularies that consists of the most common 10k,
40k, and 160k words from the complete set.

Altogether, we have considered eleven different
combinations of vocabulary size, order, and shrink
factor. We have run all experiments with window
sizeω = 6.

A first insight into the challenge of hypothesiz-
ing words can be derived from the table below,
which summarizes for each of our layouts the per-
centage of words that have homographs, the max-
imal number of homographs that a word has, and
the average number of homographs.

Layout #Words w. Max. # Avrg. h.graphs/
h.graphs(%) h.graphs words(%)

Q14 14.84 13 0.27
Q10 19.96 20 0.51
Q8 32.61 82 1.84
Q5 54.25 86 6.84
T9 27.52 24 1.00

perplexity

of

 n
gr

am
s

100 500 1000

10
^4

5*
10

^4
5*

10
^5

5*
10

^6

v10k.n1

v40k.n1

v40k.n2

v40k.n2.s10

v40k.n2.s2000

v40k.n3

v40k.n3.s40

v160k.n1

v160k.n3.s160

v463k.n3.s40

v463k.n3

Figure 2: Perplexity v.n-gram size

These numbers are taken with respect to the 463k
size vocabulary. The number of homographs is
somewhat inflated by various minor anomalies in
the corpus.

5 Results

Before summarizing our data, we discuss the out-
of-vocabulary issue and the perplexity measure,
which help understanding the fit of a language
model with a test set.

5.1 Out-of-vocabulary Rates

For our two test sets, we have measured the out-
of-vocabulary (OOV) rate to be:

text 10k 40k 160k 463k
NAB 5.58 1.42 .40 .23
Swbd 6.34 1.14 .65 .60

The 160k vocabulary covers both NAB and
Switchboard test sets well. The OOV rate is about
.5% for both. For the NAB test set, the full vo-
cabulary results in a further drop in the OOV rate
to less than one word out of every 400. The error
rates in the rest of this section do not include OOV
words.

5.2 Perplexity

We measure the quality of our language models
in terms of theirperplexityon the NAB test set.
The perplexity of a language model over a test
sett that containsN words is2−H(t) whereH(t)
is the cross entropy(− log2 PrLM (t))/N . Thus,
the perplexity is the geometric mean number of
branches per word, given the information in the
language model. In Fig. 2, we have plotted the
number ofn-grams in each model we have used as
a function of its perplexity. A model is character-
ized by its vocabulary size, itsn-gram order, and
its shrink factor, if any. For example, the model
v463k.n3.s40 has vocabulary sizev = 463k, or-
der n = 3, and shrink factors = 40. From the
plot, we see that it offers one of the lowest per-
plexities with less than 5 millionn-grams. If we

perplexity

e
rr

o
r

ra
te

100 500 1000

0
.0

0
.5

1
.0

1
.5

v1
0k

.n
1

v4
0k

.n
1

v4
0k

.n
2

v4
0k

.n
2.
s1

0

v4
0k

.n
2.
s2

00
0

v4
0k

.n
3

v4
0k

.n
3.
s4

0

v1
60

k.
n1

v1
60

k.
n3

.s
16

0

v4
63

k.
n3

.s
40

v4
63

k.
n3

delay 0
delay 1
delay 2
delay 0, top 2

Figure 3: Q14

compare the trigram model v40.n3.s40 and the bi-
gram model v40.n2.s10, we see that they are of al-
most the same size, but the trigram model is better
at predicting words in the NAB test set. Naturally,
the unigram models suffer from high perplexity,
but they are about two orders of magnitude smaller
than the other models we have considered, with
the exception of the bigram model for vocabulary
size 40k with shrink factor of 2000.

5.3 Error rates for cluster keyboards

We plot the error rates for each layout as a function
of the perplexity of language models considered.

Q14 In Fig. 3, we have shown the results for the
Q14, the QWERTY-based layout shown in Fig. 1.
First, we notice that the top two hypotheses ac-
cording to all the language models, even the un-
igram ones, virtually always contain the correct
word. The user may type for several thousand
words on average before the intended word, if
present in dictionary, is not among the two top can-
didates. Second, we observe that the error rate for
the top candidate is about 1.5% for the unigram
models, but only .7% for the best trigram mod-
els, assumingd = 0 (when the user expects the
correct word immediately after it has been typed).
We also note that accepting a delay ofd = 1 for
the trigram models further cuts the error rates in
half to about .4%. Third, we observe that further
patience on the part of the user, namely ford = 2,
carries a relatively modest payoff. For our best
model, v40.n3, the error rate drops to only .3%.
Fourth, we note the approximate linear relation-
ship between log perplexity and error rates, for all
four kinds of errors.

perplexity

e
rr

o
r

ra
te

100 500 1000

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

v1
0k

.n
1

v4
0k

.n
1

v4
0k

.n
2

v4
0k

.n
2.
s1

0

v4
0k

.n
2.
s2

00
0

v4
0k

.n
3

v4
0k

.n
3.
s4

0

v1
60

k.
n1

v1
60

k.
n3

.s
16

0

v4
63

k.
n3

.s
40

v4
63

k.
n3

delay 0
delay 1
delay 2
delay 0, top 2

Figure 4: Q10

Q10 The 10-key QWERTY layout, Q10, results
in error rates reported in Fig. 4. Most rates are
about 50-80% higher, except for the rate of words
not among the top two candidates, which is around
.25% for the better models. This is about an order
of magnitude worse than Q14.

Q8 The layout of the non-keyboard QWERTY
increases error rates by another 50% or so accord-
ing to Fig. 5. It is worth noticing that for the best
language models, the error rate of the top can-
didate, assuming delayd = 0, is about 2% for
our best model, whereas our unigram models yield
error rates of about 4%. These numbers can be
contrasted to the 3.5% figure that we quoted in
Sect. 1.2.

Q5 In Fig. 6, the data for Q5 shows that with
a good language model the correct word will be
among the top two candidates for approximately
98.5% of all entries. This raises the interesting
possibility that typing with just five keys might be
almost as effective as on 26 keys. Only for one
word out of 70 will a correction needing more than
one key press be necessary. Since it reduces the er-
ror rate by 3/4, the use of trigram models for this
keyboard seems called for.

T9 For T9, it is possible to reach an error rate
below 1% if the second-best word is allowed to
change. If not, the use of trigrams still cuts the
error rate in half over the conventional technique
of unigrams.

6 Additional results

It is of interest to see how well the language mod-
els do on tasks that are different from business

perplexity

e
rr

o
r

ra
te

100 500 1000

0
1

2
3

4

v1
0k

.n
1

v4
0k

.n
1

v4
0k

.n
2

v4
0k

.n
2.
s1

0

v4
0k

.n
2.
s2

00
0

v4
0k

.n
3

v4
0k

.n
3.
s4

0

v1
60

k.
n1

v1
60

k.
n3

.s
16

0

v4
63

k.
n3

.s
40

v4
63

k.
n3

delay 0
delay 1
delay 2
delay 0, top 2

Figure 5: Q8

news. For this purpose, we have used the Switch-
board test set modified as described in Sect. 4. Un-
fortunately, initials and abbreviations are normal-
ized differently in the two test sets. Also, initials
and abbreviations are prone to misrecognitions.
For example, it is virtually impossible to guess ini-
tials correctly if entered via non-singleton cluster
keys. Thus, we have corrected the scores so that
we disregard all initials and abbreviations. This
is a reasonable assumption from a human factors
point of view: abbreviations will be so difficult to
enter via the non-disambiguated cluster keys that
the recommended method always is to use slower
explicit entry.

Our language models do not reflect the ways
numbers are entered. The problem is that the fre-
quency of “eight” is grossly overestimated on the
NAB corpus, since all numbers are spelled out as
in “two hundred ninety eight”. This has led to spu-
rious misrecognitions of the word “right” which
in some cluster layouts is homographic to “eight”.
We have adjusted the scores for this particular is-
sue.

6.1 Task Portability
With these preliminaries, we study the quality of
v463k.n3 on the NAB and Switchboard test sets
with d = 1:

Error rate Q14 Q10 Q8 Q5 T9
NAB (%) .2 .6 1.0 2.3 .7
Swbd (%) .4 1.5 2.7 4.7 1.0

We see that the error rates increase significantly
when going from the NAB test set to the Switch-
board set. Still, Q14 works well on the Switch-
board test set, since the error rate remains negligi-
ble. But the doubling of the error rate to 4.7% for
Q5 clearly makes it less usable. With T9, the error
rate rises from .7% to 1.0%.

perplexity

e
rr

o
r

ra
te

100 500 1000

0
2

4
6

8

v1
0k

.n
1

v4
0k

.n
1

v4
0k

.n
2

v4
0k

.n
2.
s1

0

v4
0k

.n
2.
s2

00
0

v4
0k

.n
3

v4
0k

.n
3.
s4

0

v1
60

k.
n1

v1
60

k.
n3

.s
16

0

v4
63

k.
n3

.s
40

v4
63

k.
n3

delay 0
delay 1
delay 2
delay 0, top 2

Figure 6: Q5

On NAB, we see that the elimination of initials
and abbreviations has a small, but measurable ef-
fect on the accuracy of the better keyboards. For
example, the error rate for Q14 reported in Fig. 3
is .38% and it drops to .24% when not considering
initials and abbreviations. An inspection of the ac-
tual errors reveals that initials by far constitute the
main problem. Our claim in Fig. 1 that Q14 can be
used with an accuracy of up to 99.5% is based on
this latter figure added to the OOV rate of .23%.

From our informal inspection of the test results,
we have seen more cases where artifacts of the
normalizations lead to common words being mis-
recognized. Thus, by further engineering language
models, we believe that even more robust ones
may be calculated.

6.2 Changes and bad changes ford = 1, 2
For v463k.n3, we have calculated the ratio of
changes and bad changes, see Sect. 2.3. The ta-
ble below explains how often changes occur and
what percentage of changes are bad.

Q14 Q10 Q8 Q5 T9
Changes d = 1 0.50 0.99 1.68 3.13 1.25
(%) d = 2 0.10 0.22 0.34 0.66 0.27
Bad changesd = 1 17.95 19.02 16.41 16.62 18.54
(%) d = 2 27.96 23.39 22.48 24.08 21.39

Thus ford = 1 and in the case of Q14, the user
will be bothered by a bad change rate of .09%, one
for each 1100 words entered.

7 Conclusion

We have demonstrated thatn-gram models, for
n = 3, have an important role to play for the entry
of English text on cluster keyboards.

Our results in Sect. 6.1 indicate that Q14 is sig-
nificantly more robust than T9. Also, Q14 allows

perplexity

e
rr

o
r

ra
te

100 500 1000

0
1

2
3

v1
0k

.n
1

v4
0k

.n
1

v4
0k

.n
2

v4
0k

.n
2.
s1

0

v4
0k

.n
2.
s2

00
0

v4
0k

.n
3

v4
0k

.n
3.
s4

0

v1
60

k.
n1

v1
60

k.
n3

.s
16

0

v4
63

k.
n3

.s
40

v4
63

k.
n3

delay 0
delay 1
delay 2
delay 0, top 2

Figure 7: T9

a familiar layout and an easily understood disam-
biguation method, which uses two modifier keys
for choosing the left and right letter on cluster
keys, see Fig.1.

Also, as a substitute for spoken communication,
the Q5 keyboard may enable disabled persons to
communicate effectively using far fewer keys than
26. Compared to some earlier work, we speculate
that this result may be turned into a distinct hu-
man factors advantage: we assume a fixed layout
of keys which requires no interaction except for
error situations.

Further studies must be carried out to reveal
how text entry in practice is helped by dynamic,
user-adaptable models.

Acknowledgements

We thank Anders S. Johansen for inspiring discus-
sions and Don Hindle and Brian Roark for their
help in building the language models.

References
Thomas Cormen, Charles Leiserson, and Ronald Rivest.

1992. Introduction to Algorithms. The MIT Press, Cam-
bridge, MA.

M. D. Dunlop and A. Crossan. 2000. Predictive text entry
methods for mobile phones.Personal Technologies, 4(2).

Mikel L. Forcada. 2001. Corpus-based stochastic finite-state
predictive text entry for reduced keyboards: application
to catalan. InProcesamiento del Lenguaje Natural, XVII
Congreso de la Sociedad Española de Procesamiento del
Lenguaje Natural, volume 27, pages 65–70.

J. Godfrey, E. Holliman, and J. McDaniel. 1992. Switch-
board: Telephone speech corpus for research and develop-
ment. InProceedings of the International Conference on

Acoustics, Speech, and Signal Processing, pages 517–520.
ICASSP92.

Anders S. Johansen and John Hansen. 2002. Augmentative
and alternative communication: The future of text on the
move. InProceedings of 7th ERCIM Workshop, User In-
terfaces for all, page 367 386.

S Katz. 1987. Estimation of probabilities from sparse data
for the language model component of a speech recognizer.
IEEE Trans. of Acoustics Speech and Signal Processing,
35(3):400–401.

Michael Kühn and J̈orn Garbe. 2001. Predictive and highly
ambiguous typing for a severely speech and motion im-
paired user. InUniversal Access In Human-Computer In-
teraction. Proc. of UAHCI 2001.Lawrence Erlbaum As-
sociates, August.

Mehryar Mohri, Fernando Pereira, and Michael Riley. 1997.
General-purpose Finite-State Machine Software Tools.
http://www.research.att.com/sw/tools/fsm, AT&T Labs –
Research.

Mehryar Mohri, Fernando Pereira, and Michael Riley. 2000.
The Design Principles of a Weighted Finite-State Trans-
ducer Library.Theoretical Computer Science, 231:17–32,
January.

Mikael Theory. Journal of Visual Languages, Computing
Goldstein, Robert Book, Gunilla Alsiö, and Silvia Tessa.
1999. Non-keyboard QWERTY touch typing: a portable
input interface for the mobile user. InCHI ’99, pages 32–
39. ACM Press.

D. Paul and J. Baker. 1992. The Design for the Wall Street
Journal-based CSR Corpus. InProceedings of Interna-
tional Conference on Speech and Language Processing,
Kobe, Japan. ICSLP92.

Harald Rau and Steven S. Skiena. 1996. Dialing for docu-
ments: an experiment in information theory.Journal of
Visual Languages and Computing, 7(1):79–95.

G. Riccardi, E. Bocchieri, and Roberto Pieraccini. 1995.
Non-deterministic stochastic language models for speech
recognition. InProceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing, pages
I.237–I.240. ICASSP95, May.

Kristie Seymore and Roni Rosenfeld. 1996. Scalable
Backoff Language Models. InProceedings of Interna-
tional Conference on Speech and Language Processing,
Philadelphia, Pennsylvania.

Miika Silfverberg, I. Scott MacKenzie, and Panu Korhonen.
2000. Predicting text entry speed on mobile phones. In
CHI ’2000, pages 9–16.

Kumiko Tanaka-Ishii, Yusuke Inutsuka, and Masato Takeichi.
2002. Entering text with a fourbutton device. InCOLING
2002. Proceedings of the 19th International Conference
on Computational Linguistics. Morgan Kaufman Publish-
ers.

D. J. Ward and D. J. C. MacKay. 2002. Fast hands-free
writing by gaze direction.Nature, (6900):838.

